
METAREASONING FOR PLANNING AND EXECUTION
IN AUTONOMOUS SYSTEMS

A Dissertation Presented

by

JUSTIN SVEGLIATO

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2022

College of Information and Computer Sciences

© Copyright by Justin Svegliato 2022

All Rights Reserved

METAREASONING FOR PLANNING AND EXECUTION
IN AUTONOMOUS SYSTEMS

A Dissertation Presented

by

JUSTIN SVEGLIATO

Approved as to style and content by:

Shlomo Zilberstein, Chair

Joydeep Biswas, Member

Roderic A. Grupen, Member

Meghan E. Huber, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

ACKNOWLEDGMENTS

It has always been clear to me that my success in graduate school has been the

product of many people who have supported and believed in me over the years. I

would like to take this brief opportunity to give my appreciation and gratitude to

everyone who contributed to my experience in graduate school.

Shlomo Zilberstein, my advisor, has been an incredible mentor. He has always

encouraged me to explore my own passions and taught me how to conduct research

in an enjoyable and productive way. Under his guidance, I have developed many

skills that have been and will be central to my academic career, whether it be posing

research questions, mentoring students, constructing papers, or writing grants. Thank

you, Shlomo, for being an endless source of wisdom, support, and opportunity.

I would like to thank my committee for being instrumental to my thesis. Joydeep

Biswas offered insightful technical expertise and always encouraged me to apply my

research to robots that operate in the world. Rod Grupen provided useful pointers

on situating my work in the broad context of autonomous systems. Meghan Huber

added a friendly, unique perspective that augmented my traditional view of robotics.

I am extremely grateful to Eileen Hamel, Leeanne Leclerc, and Michele Roberts

for their constant help and unreasonable patience. The intricate maze of gradu-

ate school—whether it be degree requirements, course registration, or conference

reimbursements—would have been impossible to navigate without the three of you.

Alan Labouseur and Carolyn Matheus have been instrumental to my growth as

a researcher and teacher. By introducing me to research, they sparked my curiosity

in going to graduate school and becoming a professor. More importantly, they have

iv

always given me constant, honest advice—both personal and professional—that has

shaped me in so many ways. Thank you, Alan and Carolyn, for everything.

I will always remember the fond memories that I shared with everyone in RBR.

They have listened patiently to my preliminary ideas or rough practice talks and

offered candid suggestions. Moreover, our countless discussions have made me a bet-

ter researcher, communicator, collaborator, and mentor. I am thankful to my past

and present labmates Connor Basich, Abhinav Bhatia, Moumita Choudhury, Rick

Freedman, Saaduddin Mahmud, Shuwa Miura, Pete Peterson, Luis Pineda, Sandhya

Saisubramanian, and Kyle Wray as well as several excellent undergraduate and mas-

ter’s students Allyson Beach, Ishan Khatri, Shane Parr, and Prakhar Sharma who I

had the privilege of working with on many different projects.

Throughout graduate school, I was fortunate to live at Gray Street. My past and

present housemates Matteo Brucato, Ameya Godbole, Samer Nashed, Zeal Shah,

Shanu Vashishtha, and Kyle Wray have become great friends who always offered a

much needed distraction from my work when I needed it the most. Thank you, Gray

Street, for watching shows like Star Trek, playing video games and board games like

Rocket League and Werewolf, and indulging in huge dinners at Formosa.

Similarly, I have been surrounded by a supportive, close-knit community at CICS.

I have shared many memories with Akanksha Atrey, Sam Baxter, Garrett Bernstein,

Su Lin Blodgett, Lucas Chaufournier, Eddie Cunningham, Khoshrav Doctor, Cecilia

Ferrando, Ben Glickenhaus, Conrad Holtsclaw, Myungha Jang, Aishwarya Kamath,

Katie Keith, Tiffany Liu, Manish Motwani, Chris Nota, Jonas Pfeiffer, Sadegh Ra-

biee, Soha Rostaminia, Dirk Ruiken, Katherine Thai, Kevin Winner, and Sam Witty.

Thank you for making my years here in Amherst so memorable.

My close friends Andrew DiNonno, Joshua Matheus, and Ryan Montano have

always provided me with constant advice ranging from my career trajectory and

research direction to my financial plans and personal relationships. They each have

v

a way of keeping me honest with myself and my goals and have become a part of my

family over the years. Thank you for all of our memories together.

My family has surrounded me with enduring love throughout my life. I want to

thank my parents Karen and John, my siblings Jessica, John, and Kailani, my aunt

Heather, my brother-in-law Matt, and my father-in-law Rich. Finally, my partner

Yume has stood by me patiently and encouraged me during every challenging step of

graduate school. Thank you, Yume, for your lasting love, empathy, and support. I

look forward to our lives together.

vi

ABSTRACT

METAREASONING FOR PLANNING AND EXECUTION
IN AUTONOMOUS SYSTEMS

FEBRUARY 2022

JUSTIN SVEGLIATO

B.Sc., MARIST COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shlomo Zilberstein

Metareasoning is the process by which an autonomous system optimizes, specif-

ically monitors and controls, its own planning and execution processes in order to

operate more effectively in its environment. As autonomous systems rapidly grow

in sophistication and autonomy, the need for metareasoning has become critical for

efficient and reliable operation in noisy, stochastic, unstructured domains for long

periods of time. This is due to the uncertainty over the limitations of their reasoning

capabilities and the range of their potential circumstances. However, despite con-

siderable progress in metareasoning as a whole over the last thirty years, work on

metareasoning for planning relies on several assumptions that diminish its accuracy

and practical utility in autonomous systems that operate in the real world while work

on metareasoning for execution has not seen much attention yet. This dissertation

therefore proposes more effective metareasoning for planning while expanding the

vii

scope of metareasoning to execution to improve the efficiency of planning and the

reliability of execution in autonomous systems.

In the first part of this dissertation, we propose two forms of metareasoning for

efficient planning in autonomous systems. The first approach determines when to

interrupt an anytime algorithm and act on the current solution by using online per-

formance prediction: the meta-level control technique estimates optimal stopping of

the anytime algorithm by predicting the performance of the anytime algorithm on-

line. The second approach tunes the hyperparameters of the anytime algorithm at

runtime by using deep reinforcement learning: the meta-level control technique esti-

mates optimal hyperparameter tuning of the anytime algorithm by learning through

simulation. The final result is a metareasoning framework that can determine the

stopping point as well as tune the hyperparameters of anytime algorithms to achieve

efficient planning in autonomous systems.

In the second part of this dissertation, we propose two forms of metareasoning for

reliable execution in autonomous systems. The first approach recovers from exceptions

that can be encountered during operation by using belief space planning: the meta-

level control technique interleaves a main decision process with a set of exception

handlers to detect, identify, and handle exceptions. The second approach maintains

and restores safety during operation by using probabilistic planning: the meta-level

control technique executes in parallel a main decision process and a set of safety

processes with a conflict resolver for arbitration. The final result is a metareasoning

framework that can recover from exceptions as well as maintain and restore safety to

attain reliable execution in autonomous systems.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vii

LIST OF TABLES . xiv

LIST OF FIGURES . xv

CHAPTER

1. INTRODUCTION . 1

1.1 Metareasoning for Bounded Rationality . 1
1.2 Thesis Contributions . 8
1.3 Graduate Work . 12

1.3.1 Thesis Work . 12
1.3.2 Additional Work . 13

1.4 Thesis Organization . 15

2. BACKGROUND . 16

2.1 Overview . 16
2.2 Markov Decision Processes . 16

2.2.1 Formal Definition . 17

2.2.1.1 Infinite Horizon Problems . 18
2.2.1.2 Finite Horizon Problems . 20
2.2.1.3 Stochastic Shortest Path Problems 21
2.2.1.4 Relevant Concepts . 23

2.2.2 Planning Methods . 25

2.2.2.1 Value Iteration . 25

ix

2.2.2.2 Policy Iteration . 26
2.2.2.3 Linear Programming . 27

2.2.3 Reinforcement Learning Methods . 28

2.2.3.1 SARSA . 29
2.2.3.2 Q-Learning . 30

2.3 Partially Observable Markov Decision Processes . 32

2.3.1 Formal Definition . 32

2.3.1.1 Infinite Horizons Problems . 35
2.3.1.2 Finite Horizon Problems . 36
2.3.1.3 Belief Markov Decision Processes . 38

2.3.2 Planning Methods . 40

2.3.2.1 Value Iteration . 40

3. METAREASONING FOR STOPPING . 42

3.1 Introduction . 42

3.1.1 Contributions . 44

3.2 Meta-Level Control Problem . 44
3.3 Model-Based Metareasoning with Online Performance Prediction 46
3.4 Model-Based Meta-Level Control Technique . 48

3.4.1 Myopic Projected Stopping Condition . 51
3.4.2 Nonmyopic Projected Stopping Condition . 52

3.5 Model-Free Metareasoning with Reinforcement Learning 53
3.6 Model-Free Meta-Level Control Technique . 58

3.6.1 Update Rules . 60

3.6.1.1 ε-greedy Q-learning Example . 60

3.6.2 Exploration Strategies . 61

3.6.2.1 ε-greedy Q-learning Example . 61

3.7 Experiments . 61

3.7.1 Domains . 62

x

3.7.1.1 Lin-Kernighan Heuristic Domain . 63
3.7.1.2 Genetic Algorithm Domain . 63
3.7.1.3 Simulated Annealing Domain . 63
3.7.1.4 Mobile Robot Domain . 64

3.7.2 Model-Based Evaluation . 64

3.7.2.1 Discussion . 67

3.7.3 Model-Free Evaluation . 69

3.7.3.1 Discussion . 73

3.8 Summary . 74

4. METAREASONING FOR HYPERPARAMETER TUNING 76

4.1 Introduction . 76

4.1.1 Contributions . 78

4.2 Related Work . 78
4.3 Adjustable Algorithms . 80
4.4 Metareasoning with Deep Reinforcement Learning 84
4.5 Anytime Weighted A* Example . 88
4.6 Experiments . 91

4.6.1 Common Benchmark Domain . 93

4.6.1.1 Sliding Puzzle . 93
4.6.1.2 Inverse Sliding Puzzle . 94
4.6.1.3 Traveling Salesman Problem . 94
4.6.1.4 City Navigation Problem . 94
4.6.1.5 Discussion . 95

4.6.2 Mobile Robot Application . 97

4.6.2.1 Discussion . 99

4.7 Summary . 101

5. METAREASONING FOR EXCEPTION RECOVERY 102

5.1 Introduction . 102

5.1.1 Contributions . 104

xi

5.2 Exception Recovery . 105

5.2.1 Exception Recovery Metareasoning Systems 105
5.2.2 Decision Process Profiles . 110
5.2.3 Dynamics . 113
5.2.4 Robustness . 114

5.3 Autonomous Driving Domain . 115

5.3.1 Navigation Problem . 116
5.3.2 Obstacle Handling Problem . 116
5.3.3 Exception Recovery Metareasoning Vehicle 118
5.3.4 Analysis . 119

5.4 Demonstration . 121
5.5 Discussion . 123
5.6 Summary . 124

6. METAREASONING FOR SAFETY . 126

6.1 Introduction . 126

6.1.1 Contributions . 129

6.2 Safety . 129

6.2.1 Completing Tasks . 129
6.2.2 Addressing Safety Concerns . 130
6.2.3 Resolving Conflicts . 132
6.2.4 Safety Metareasoning Systems . 133

6.2.4.1 Recommendation Algorithm . 135
6.2.4.2 Arbitration Algorithm . 138

6.3 Planetary Rover Exploration Domain. 140

6.3.1 Task Process . 142
6.3.2 Safety Processes . 142

6.3.2.1 Crevices . 143
6.3.2.2 Dust Storms . 143
6.3.2.3 Rough Terrain . 144

6.4 Demonstration . 144
6.5 Discussion . 145
6.6 Summary . 148

xii

7. CONCLUSION . 149

7.1 Summary of Contributions . 149

7.1.1 Metareasoning for Stopping . 149
7.1.2 Metareasoning for Hyperparameter Tuning 150
7.1.3 Metareasoning for Exception Recovery . 150
7.1.4 Metareasoning for Safety . 151

7.2 Future Work . 151

7.2.1 Metareasoning for Planning . 151
7.2.2 Metareasoning for Execution . 153
7.2.3 Integrating Planning and Execution . 153

7.3 Final Thoughts . 154

BIBLIOGRAPHY . 155

xiii

LIST OF TABLES

Table Page

3.1 The average time-dependent utility for the best tour computed by the
Lin-Kernighan heuristic on five TSPs with our model-based
metareasoning approach. 65

3.2 The average time-dependent utility for the best schedule computed
by the genetic algorithm on three JSPs with our model-based
metareasoning approach. 65

3.3 The average time-dependent utility for the best assignment computed
by simulated annealing on three QAPs with our model-based
metareasoning approach. 65

3.4 The average time-dependent utility for the best path computed by
the path planning algorithm on three maps with our model-based
metareasoning approach. 66

3.5 The average time-dependent utility loss for the best tour computed
by the Lin-Kernighan heuristic on five TSPs with our model-free
metareasoning approach. 71

3.6 The average time-dependent utility loss for the best schedule
computed by the genetic algorithm on two JSPs with our
model-free metareasoning approach. 71

3.7 The average time-dependent utility loss for the best assignment
computed by simulated annealing on two QAPs with our
model-free metareasoning approach. 71

3.8 The average time-dependent utility loss for the best path computed
by the path planning algorithm on three maps with our
model-free metareasoning approach. 73

5.1 The performance of all autonomous vehicles on exception
recovery. 122

6.1 A comparison of a naive approach and our approach to safety. 147

xiv

LIST OF FIGURES

Figure Page

1.1 A metareasoning framework for monitoring and controlling the
planning and execution processes of autonomous systems. 7

2.1 A Bayesian network for the casual relationships of an MDP. 18

2.2 A Bayesian network for the casual relationships of a POMDP. 33

3.1 An example of the meta-level control problem. 45

3.2 An illustration of online performance prediction. 48

3.3 A depiction of model-free meta-level control. 54

3.4 The Office map (left) with the riskiest path (red), a very risky path
(yellow), a very safe path (blue), and the safest path (green) in
addition to the environment of the mobile robot (right). 67

3.5 The preprocessing time of prevailing planning approaches. 68

3.6 The change in the prediction error of our approach. 68

3.7 The learning curves for each of our meta-level control techniques on
the 60-Tsp, 40-Jsp, and 150-Qap benchmark problems. 72

3.8 The adaptation period for each of our Fourier basis meta-level control
techniques on all TSP benchmark problems. 72

3.9 A simulation of the mobile robot domain. 74

4.1 An example of two executions of anytime weighted A*. 81

4.2 A diagram of our meta-level control technique. 85

4.3 An example of a metareasoning architecture for anytime weighted A*
that has a meta-level process and an object-level process. 90

xv

4.4 A modified implementation of anytime weighted A* that manages
multiple open lists each associated with a specific weight. 91

4.5 The box plots of the final solution qualities produced by anytime
weighted A* for each approach over all instances of the Sp
(top-left), Isp (top-right), Tsp (bottom-left), and Cnp
(bottom-right) heuristic search problems. 95

4.6 The first pair of analyses for the Sp heuristic search problem. 96

4.7 The second pair of analyses for the Sp heuristic search problem. 96

4.8 The performance of our approach and the standard approach to
RRT* with a small and large growth factor over all instances of
the motion planning problem. 98

4.9 The evolution of RRT* over the number of samples for our approach
on a select instance of the motion planning problem from
Checkpoint 1 to 4. 99

5.1 An example of an exception recovery metareasoning system. 103

5.2 The space of beliefs of an exception recovery metareasoning system
over the set of potential exceptions where each region is linked to
a decision process. 106

5.3 An exception recovery metareasoning system that interleaves the
regular process with exception handlers based on its belief over
possible exceptions. 110

5.4 The transition of an exception recovery metareasoning system in its
state space during the execution of a decision process. 113

5.5 An example route with several obstacles. 115

5.6 A fully operational exception recovery metareasoning vehicle
prototype. 122

6.1 An illustration of a safety metareasoning system. 128

6.2 A safety metareasoning system that has the task process (red), a set
of safety processes (blue), and the conflict resolver (purple). 134

xvi

6.3 The performance of each planetary rover for the severity levels and
the interference starting with no safety processes and ending with
all safety processes. 145

6.4 The severity level probability distributions for different combinations
of safety concerns across every simulation. 146

xvii

CHAPTER 1

INTRODUCTION

1.1 Metareasoning for Bounded Rationality

It has long been recognized that intelligent agents cannot be capable of per-

fect rationality due to the intractability of optimal decision making in complex do-

mains [132, 133, 67, 123, 178]. In fact, in the early twentieth century, Herbert Simon

noted the two main limitations of optimal decision making that is necessary to per-

fect rationality. First, perfect rationality can be impossible for autonomous systems

because optimal decision making may require performing an intractable number of

computations within a limited amount of time. Second, even if it were possible,

perfect rationality can reduce the utility offered to autonomous systems since opti-

mal decision making may involve using substantial computational resources, such as

computation time, excessive processor usage, or memory pressure. As an example of

these limitations, the optimal policy to a decision making problem that represents a

navigation task can either be impossible to compute or take so long to compute that

it no longer offers any utility to a mobile robot, such as an autonomous vehicle, a

space exploration rover, or an unmanned aerial vehicle. Hence, motivated by the lack

of operational significance of optimal decision making in complex domains, Simon

concluded that intelligent agents ought to be capable of bounded rationality by using

some criteria that evaluates whether or not a decision is satisficing—meaning that

the decision is “satisfactory” or “good enough” in Scottish—for the situation at hand.

Simon’s analysis of bounded rationality in intelligent agents has resulted in a

substantial body of work within psychology and artificial intelligence. In psychology,

1

there have been efforts to develop descriptive models of human rationality [45]. These

models attempt to describe how people make decisions in the real world in the face of

difficult problems with considerable uncertainty, complicated features, and strict time

constraints. For example, instead of heavily relying on logical reasoning and exhaus-

tive knowledge, there have been studies that suggest that people rely on simple—

albeit roughly accurate—general-purpose heuristic methods for decision making in

complex situations [46]. Moreover, in artificial intelligence, there have been efforts to

develop computational approaches to bounded rationality [123]. These approaches at-

tempt to build methods that incorporate the cost of decision making among other fac-

tors into the process of deliberation of autonomous systems [52, 66, 37, 163, 122, 175].

For instance, there have been methods that determine when to interrupt an anytime

algorithm and act on the current solution by balancing the quality of a solution with

the computation time required to compute that solution [61, 60, 149] and techniques

that execute a portfolio of anytime algorithm in parallel by allocating different shares

of processing power [109]. However, while Simon was the first to offer a comprehen-

sive analysis of bounded rationality, he did not propose an effective computational

framework for implementing bounded rationality in intelligent agents.

Specifically, in artificial intelligence, there have been three main computational

approaches to bounded rationality in intelligent agents that have gradually been de-

veloped over the last fifty years. The earliest and simplest computational approach

to bounded rationality has been based on approximate reasoning. Approximate rea-

soning can take on many different forms. A typical form of approximate reasoning

employs algorithms that can compute an approximate solution to an instance of a

problem. More often than not, computing an approximate solution requires signifi-

cantly less computational resources than computing an optimal solution to a prob-

lem. For example, in contrast to exact heuristic search algorithms that are designed

to compute an optimal solution to a search problem, such as A* or LAO* [62, 59],

2

approximate heuristic search algorithms, such as anytime weighted A* or anytime

RBFS [61, 58], can be used to calculate an approximate solution. Both exact and

approximate heuristic search algorithms, however, still exploit domain knowledge to

guide the search process, which improves their efficiency by reducing the amount

of computation that must be performed by these algorithms. Another form of ap-

proximate reasoning employs algorithms that can compute an optimal solution to an

instance of an approximate problem. In other words, it solves a simplified version

of the original problem. By eliminating details that may be necessary to optimality

in order to reduce complexity, the simplified version of the original problem can be

significantly easier to solve optimally. For instance, in the field of probabilistic plan-

ning, it is possible to solve reduced models that remove either less informative state

features or less likely outcomes, which may be necessary for perfect rationality but

not critical for bounded rationality [112, 113, 126, 129, 128, 127]. However, regard-

less of its form, approximate reasoning is often complemented by other more complex

computational approaches to bounded rationality.

The most ambitious computational approach to bounded rationality has been

based on bounded optimality. Bounded optimality techniques find the most effective

program that can compute a solution to an instance of a problem within the space

of programs that are defined by the specific computational architecture of an au-

tonomous system [121, 122]. More formally, a program can be said to be optimal if

the overall expected utility of running the program on the specific computational ar-

chitecture of an autonomous system is at least as high as all other programs that could

be run. For example, on a mobile robot, if the computational architecture requires

node expansions in a heuristic search algorithm to plan a route in an office building,

the space of programs could be represented by different strategies for ordering the

set of nodes to be expanded by the heuristic search algorithm [121]. Moreover, if the

mobile robot used an anytime algorithm for route planning instead, the space of pro-

3

grams could be represented by different methods for deciding when to interrupt the

anytime algorithm and act on the current solution [60]. It is therefore the responsibil-

ity of the designer—and surprisingly not the autonomous system itself—to not only

develop the program but also prove that the program is optimal for the computational

architecture of an autonomous system. Since bounded optimality techniques can be

challenging to develop for many problems even given a finite space of programs, a

weaker form has been proposed for asymptotic bounded optimality that only requires

that the program performs as effectively as the optimal program by a constant factor

on every instance of the problem. However, while bounded optimality offers a formal

framework and exhibits many useful properties for bounded rationality, it has rarely

been used in practice due to the lack of practicality and feasibility of optimizing over

programs that solve problems rather than over solutions to problems.

The computational approach to bounded rationality that has seen the most use

in practice has been based on metareasoning [178]. In general, a metareasoning tech-

nique is a process that enables an autonomous system to monitor and control its own

object-level processes in order to act more effectively in its environment. When a

metareasoning technique can be proven to be optimal with respect to maximizing the

overall expected utility of an autonomous system, we typically refer to it as optimal

metareasoning. As an example, one of the most popular forms of optimal metarea-

soning enables an autonomous system to monitor and control an anytime algorithm

as its own planning process. In particular, there have been different metareasoning

techniques for determining when to interrupt an anytime algorithm and act on the

current solution by using a model that represents the performance of the anytime al-

gorithm [61, 60]. At a high level, this general framework allows autonomous systems

to handle any uncertainty about the range of their potential circumstances and the

limitations of their reasoning capabilities. Metareasoning is therefore the focus of this

4

thesis because it has been shown to be the most effective computational approach to

bounded rationality in autonomous systems over the years.

Naturally, there has been a wide range of work on metareasoning for autonomous

systems. Generally, each metareasoning technique optimizes—namely monitors and

controls—a specific object-level process that is executed by the autonomous system.

Here, we mention just a few typical examples of metareasoning that monitor and

control different forms of planning. First, [90] offers a technique for algorithm selec-

tion that identifies the best algorithm to solve a problem among a set of candidate

algorithms by compiling a model with a limited number of features to predict the

efficiency and accuracy of each algorithm. Similarly, [109] introduces a technique for

algorithm portfolios that executes a collection of anytime algorithms in parallel by

allocating different shares of processing power to each algorithm. Moreover, [179]

presents a technique for contract sequencing that executes an anytime algorithm for

a sequence of contracts with or without stochastic information about the deadline.

More recently, [63] proposes a technique for simulation selection that chooses the next

computation, specifically the next simulation, to be performed by Monte Carlo tree

search techniques by representing the decision as a Bayesian selection problem that

maximizes the value of information. Finally, [5] provides a technique for state space

expansion that interleaves unrolling the state space of a Markov decision process with

solving for a partial policy by using a set of heuristic conditions. Central to these

metareasoning techniques is the idea that a decision or a set of decisions must be

made by the autonomous system to optimize a specific form of planning.

A large body of work on metareasoning for autonomous systems that is related to

planning but is broader in scope has also been well studied. First, [41] introduces a

technique for learning management that determines when to restart or stop learning

based on its perceived skill level on the problem at hand by managing a collection of

heuristics. Next, [118] proposes a technique for filter selection that identifies a filter

5

from a bank of filters given the perceived effectiveness of each filter in tracking a

selected object. In addition, [101] and [48] provide a technique for domain knowledge

adaptation that adjusts the domain knowledge of an autonomous system if a deci-

sion has been deemed incorrect by using meta-knowledge that describes the current

structure of that domain knowledge. Moreover, [11] offers a technique for case-based

reasoning adjustment that monitors a case-based reasoner, determines the cause of

any failures, and selects actions that adjust the case-based reasoner accordingly. More

broadly, [9] and [8] develop a framework referred to as the meta-cognitive loop that

monitors, reasons about, and adjusts the decision-making module of an autonomous

system to improve its robustness to perturbations of the world. Note that it is worth-

while to mention that a collection of work on distributed metareasoning [114, 120]

and metareasoning in cognitive architectures [34, 84] has seen much attention.

Generally, as autonomous systems rapidly grow in sophistication and autonomy,

the need for metareasoning as an approach to bounded rationality has become critical

to their design, development, and deployment. In this thesis, we argue that metar-

easoning is an effective framework for both efficient and reliable decision making in

autonomous systems that operate in noisy, stochastic, unstructured domains for long

periods of time: efficient in that the system has the ability to perform rapid planning

and reliable in that the system has the ability to exhibit robust execution. This dis-

sertation answers four main questions that are central to efficient and reliable decision

making in autonomous systems that operate in the real world:

1. Stopping. How can an autonomous system determine when to interrupt an

anytime algorithm and act on the current solution without the need for any

substantial offline work?

2. Hyperparameter Tuning. How can an autonomous system tune the hyper-

parameters of an anytime algorithm at runtime to boost its overall performance

on a specific problem instance and time constraint?

6

Planning Module

monitoring control

Execution Module

monitoring control

requests

and

feedback

Metareasoning

Planning

Metareasoning

Execution

Figure 1.1: A metareasoning framework for monitoring and controlling the planning
and execution processes of autonomous systems.

3. Exception Recovery. How can an autonomous system not only detect and

identify but also handle exceptions during operation that prevent its main de-

cision processes from completing a task?

4. Safety. How can an autonomous system maintain and restore safety during

operation as its main decision processes are completing a task?

In order to answer these questions, we propose a novel metareasoning framework

for autonomous systems with two modules shown in Figure 1.1. Suppose that an

autonomous system has a planning process that plans a policy and an execution pro-

cess that executes a policy. This metareasoning framework enables the autonomous

system to monitor and control its planning processes for efficiency and its execution

processes for reliability. At a high level, the main objective of this thesis is to develop

more effective metareasoning for planning while expanding the scope of metareasoning

to execution. We summarize the planning module and the execution module below.

The planning meta-level control module monitors and controls the planning pro-

cess of the autonomous system in order to efficiently generate a policy to be followed

by the execution module. Similar to earlier work [60], we use a planning process based

on an anytime algorithm that gradually improves the quality of a policy as it runs and

returns the current policy if it is interrupted. However, because meta-level control of

7

anytime algorithms poses two well-known limitations, we propose two forms of metar-

easoning for the planning process. First, since existing meta-level control techniques

rely on several unrealistic assumptions that can diminish the accuracy and practical

utility of anytime algorithms in autonomous systems that operate in the real world,

we offer metareasoning for optimal stopping that uses online performance prediction

and reinforcement learning. Second, since existing meta-level control techniques do

not tune the hyperparameters of anytime algorithms at runtime, which can slow the

improvement in the quality of a policy in many domains, we offer metareasoning for

optimal hyperparameter tuning that uses deep reinforcement learning.

The execution meta-level control module monitors and controls the execution pro-

cess of the autonomous system in order to reliably follow a policy generated by the

planning module. However, because there has been little work in applying meta-level

control beyond the planning process to the execution process of an autonomous sys-

tem, we propose two forms of metareasoning for the execution process. First, we

offer metareasoning for exception recovery that interleaves a main decision process

with a set of exception handlers to detect, identify, and handle exceptions during

operation by using belief space planning. Second, we offer metareasoning for safety

that executes in parallel a main decision process and a set of safety processes with

a conflict resolver for arbitration to maintain and restore safety during operation by

using probabilistic planning.

1.2 Thesis Contributions

We summarize the two forms of metareasoning for the planning module (i.e., Con-

tributions 1 and 2) and the two forms of metareasoning for the execution module (i.e.,

Contributions 3 and 4) that compose the metareasoning framework that we propose

for autonomous systems. Note that each main chapter of this thesis corresponds to a

contribution. We summarize the contributions of this thesis below.

8

1. Metareasoning for Stopping (Planning) Anytime algorithms offer a trade-

off between solution quality and computation time that has proven to be useful

in autonomous systems for a wide range of real-time decision making problems.

To optimize this trade-off, an autonomous system has to solve a challenging

meta-level control problem: the autonomous system must decide when to inter-

rupt the anytime algorithm and act on the current solution. Existing meta-level

control techniques for anytime algorithms, however, rely on planning with a per-

formance profile that must be compiled offline prior to the activation of meta-

level control. This poses a number of unrealistic assumptions that reduce the

accuracy and usefulness of meta-level control of anytime algorithms in the real

world. Eliminating these assumptions, we therefore introduce two different ap-

proaches to meta-level control of anytime algorithms. First, we propose a novel

model-based approach to meta-level control based on online performance predic-

tion that adapts to each instance of a problem without any substantial offline

preprocessing. Second, we propose a novel model-free approach to meta-level

control based on reinforcement learning that adapts to each instance of a prob-

lem by learning through online simulation. Both approaches are evaluated on a

set of experiments that show that they outperform existing meta-level control

techniques that require substantial offline work on several common benchmark

domains and a mobile robot domain. The result is nonmyopic meta-level con-

trol that improves the accuracy and usefulness of meta-level control of anytime

algorithms in autonomous systems.

2. Metareasoning for Hyperparameter Tuning (Planning) Anytime algo-

rithms often have hyperparameters that can be tuned at runtime to boost their

overall performance in a given scenario—a specific problem instance and time

constraint. However, while existing work on metareasoning has focused on

9

determining when to interrupt an anytime algorithm and act on the current

solution, there has not been much work on tuning the hyperparameters of an

anytime algorithm at runtime. We therefore offer a general, decision-theoretic

metareasoning approach that optimizes both the stopping point and hyperpa-

rameters of anytime algorithms. First, we propose a generalization of an any-

time algorithm called an adjustable algorithm that can be interrupted at any

time for its current solution with hyperparameters that can be tuned at run-

time. Next, we offer a meta-level control technique that monitors and controls

an adjustable algorithm by using deep reinforcement learning. Finally, we show

that an application of our approach boosts overall performance on a common

benchmark domain that uses anytime weighted A* to solve a range of heuris-

tic search problems and a mobile robot application that uses RRT* to solve

motion planning problems compared to standard approaches that either set its

hyperparameters to a static value or tune its hyperparameters heuristically. The

result is nonmyopic meta-level control that uses deep reinforcement learning to

boost the overall performance of adjustable algorithms in autonomous systems.

3. Metareasoning for Exception Recovery (Execution) Due to the complex-

ity of the real world, autonomous systems use decision-making models that rely

on simplifying assumptions to make them computationally tractable and feasi-

ble to design. However, since these limited decision-making models cannot fully

capture the domain of operation, an autonomous system may encounter unan-

ticipated scenarios that cannot be resolved effectively. Addressing this problem,

we therefore introduce an exception recovery metareasoning system that uses

belief space planning to detect, identify, and handle exceptions during opera-

tion by interleaving a main decision process with a set of exception handlers.

We then apply an exception recovery metareasoning system to an autonomous

10

driving domain. Finally, we demonstrate that an exception recovery metarea-

soning vehicle is effective in simulation and on a fully operational prototype.

The result is a belief space planning approach to robust exception recovery in

autonomous systems.

4. Metareasoning for Safety (Execution) Maintaining and restoring safety

is critical to autonomous systems that operate in the real world. While de-

velopers carefully design, develop, and test the models used by autonomous

systems for decision making, it is infeasible to build monolithic decision-making

models that maintain or restore safety in every possible scenario that can be

encountered within the domain of operation. Due to this limitation, the need

for autonomous systems to have the ability to maintain and restore safety is

critical. We therefore introduce a safety metareasoning system that reduces

the severity of the system’s safety concerns and the interference to the system’s

task. In particular, the system executes in parallel a task process that completes

a specified task and safety processes that each address a specified safety concern

with a conflict resolver for arbitration. First, we offer a formal definition of a

safety metareasoning system as well as a recommendation algorithm for a safety

process and an arbitration algorithm for a conflict resolver with a theoretical

analysis of the correctness and worst-case time-complexity for each algorithm.

We then apply a safety metareasoning system to a planetary rover exploration

domain. Finally, we demonstrate that a safety metareasoning planetary rover

is effective in simulation. The result is a probabilistic planning approach to

maintaining and restoring safety in autonomous systems.

11

1.3 Graduate Work

We list work completed during my graduate career—namely conference papers,

patents, and workshop papers—that has been published in chronological order below.

This work has been separated into thesis work that has been completed toward my

thesis and additional work that has been completed outside of my thesis. Note that

an asterisk denotes that the authors contributed equally.

1.3.1 Thesis Work

• J. Svegliato, K. Wray, and S. Zilberstein. Meta-level control of anytime algo-

rithms with online performance prediction. Proceedings of the Twenty-Seventh

International Joint Conference on Artificial Intelligence. 2018.

• J. Svegliato and S. Zilberstein. Adaptive metareasoning for bounded rational

agents. Proceedings of the IJCAI Workshop on Architectures and Evaluation

for Generality, Autonomy and Progress in AI. 2018.

• J. Svegliato, K. Wray, S. Witwicki, J. Biswas, and S. Zilberstein. Belief space

metareasoning for exception recovery. Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems. 2019.

• J. Svegliato, P. Sharma, and S. Zilberstein. A model-free approach to meta-level

control of anytime algorithms. Proceedings of the IEEE International Confer-

ence on Robotics and Automation. 2020.

• J. Svegliato, S. Witwicki, K. Wray, and S. Zilberstein. Introspective autonomous

vehicle operational management. US Patent 10,649,453. 2020.

• J. Svegliato. A metareasoning framework for planning and execution in au-

tonomous systems. Proceedings of the Doctoral Consortium at the Twenty-Forth

European Conference on Artificial Intelligence. 2020.

12

• A. Bhatia, J. Svegliato, and S. Zilberstein. On the benefits of randomly adjust-

ing anytime weighted A*. Proceedings of the Fourteenth Annual Symposium on

Combinatorial Search. 2021.

• A. Bhatia, J. Svegliato, and S. Zilberstein. Tuning the hyperparameters of

anytime planning: A deep reinforcement learning approach. Proceedings of the

ICAPS Workshop on Heuristics and Search for Domain-Independent Planning.

2021.

• J. Svegliato, C. Basich, S. Saisubramanian, and S. Zilberstein. Using metarea-

soning to maintain and restore safety for reliable autonomy. Proceedings of the

IJCAI Workshop on Robust and Reliable Autonomy in the Wild. 2021.

1.3.2 Additional Work

• J. Svegliato, S. Witty, A. Houmansadr, and S. Zilberstein. Belief space planning

for automated malware defense. Proceedings of the IJCAI Workshop on AI for

Internet of Things. 2018.

• C. Basich, J. Svegliato, K. Wray, S. Witwicki, J. Biswas, and S. Zilberstein.

Learning to optimize autonomy in competence-aware systems. Proceedings of

the Eighteenth International Conference on Autonomous Agents and Multiagent

Systems. 2020.

• J. Svegliato, S. Nashed, and S. Zilberstein. An integrated approach to moral

autonomous systems. Proceedings of the Twenty-Forth European Conference on

Artificial Intelligence. 2020.

• C. Basich, J. Svegliato, S. Zilberstein, K. Wray, and S. Witwicki. Improv-

ing competence for reliable autonomy. Proceedings of the ECAI Workshop on

Agents and Robots for Reliable Engineered Autonomy. 2020.

13

• J. Svegliato, S. Nashed, and S. Zilberstein. Ethically compliant planning in

moral autonomous systems. Proceedings of the IJCAI Workshop on AI Safety.

2020.

• S. Parr, I. Khatri, J. Svegliato, and S. Zilberstein. Agent-aware state estima-

tion: Effective traffic light classification for autonomous vehicles. Proceedings of

the ICRA Workshop on Sensing, Estimating and Understanding the Dynamic

World. 2020.

• J. Svegliato, S. Nashed, and S. Zilberstein. Ethically compliant sequential de-

cision making. Proceedings of the Thirty-Fifth AAAI Conference on Artificial

Intelligence. 2021.

• S. Nashed*, J. Svegliato*, M. Brucato, C. Basich, R. Grupen, and S. Zilberstein.

Solving Markov decision processes with partial state abstractions. Proceedings

of the IEEE International Conference on Robotics and Automation. 2021.

• S. Nashed, J. Svegliato, and S. Zilberstein. Ethically compliant planning within

moral communities. Proceedings of the Fourth AAAI/ACM Conference on Ar-

tificial Intelligence, Ethics, and Society. 2021.

• C. Basich, J. Svegliato, A. Beach, S. Zilberstein, K. Wray, and S. Witwicki.

Improving competence via iterative state space refinement. Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems. 2021.

• S. Parr, I. Khatri, J. Svegliato, and S. Zilberstein. Agent-aware state esti-

mation for autonomous vehicles. Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems. 2021.

14

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 reviews the standard

formal sequential decision-making models and the standard solution methods used

to solve them. Chapter 3 offers a model-based metareasoning approach that uses

online performance prediction and a model-free metareasoning approach that uses

reinforcement learning to monitor and control anytime algorithms in autonomous

systems, enabling the planning module to determine when to interrupt an anytime

algorithm and act on the current solution. Chapter 4 offers a metareasoning approach

that uses deep reinforcement learning to monitor and control adjustable algorithms in

autonomous systems, allowing the planning module to tune the hyperparameters of

an adjustable algorithm at runtime. Chapter 5 offers a metareasoning approach that

uses belief space planning for exception recovery in autonomous systems, enabling

the execution module to detect, identify, and handle exceptions during operation.

Chapter 6 offers a metareasoning approach that uses probability planning for safety

in autonomous systems, allowing the execution module to maintain and restore safety

during operation. Chapter 7 concludes with a summary of the thesis and future work.

15

CHAPTER 2

BACKGROUND

2.1 Overview

In this chapter, we review the standard formal sequential decision-making mod-

els and the standard solution methods used to solve them. First, we review the

standard definition of Markov decision processes (MDP) and their standard planning

and reinforcement learning methods. This includes a discussion of infinite horizon

problems, finite horizon problems, stochastic shortest path problems, and other rel-

evant concepts as well as a discussion of planning methods, such as value iteration,

policy iteration, and linear programming, and reinforcement learning methods, such

as SARSA and Q-Learning. Second, we review the standard definition of partially

observable Markov decision processes (POMDP) and a standard planning method.

This includes a discussion of infinite horizon problems, finite horizon problems, and

belief MDPs as well as a discussion of the planning method value iteration.

2.2 Markov Decision Processes

A Markov decision process is a formal sequential decision-making model for

reasoning in fully observable, stochastic environments [20]. Intuitively, the process

describes the world of the agent using four components: a set of states of the world, a

set of actions of the agent, a transition function, and a reward function. At each time

step, when the agent performs an action in a state, the agent receives a reward based

on the reward function and transitions to a successor state based on the transition

function. Most importantly, a Markov decision process satisfies a special property.

16

The Markov property holds that any transition to a successor state only depends

on the current state of the world and the current action of the agent, which means

that the history of states and actions before the current state and action do not

matter. The goal of the agent is to maximize some notion of value over all states.

2.2.1 Formal Definition

A Markov decision process (MDP) is a formal sequential decision-making

model for reasoning in fully observable, stochastic environments [20]. An MDP can

be described as a tuple, 〈S,A, T,R〉, where

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A× S → [0, 1] is a transition function, T (s, a, s′) = Pr(s′|s, a), that

represents the probability of reaching a state s′ ∈ S after performing an action

a ∈ A in a state s ∈ S, and

• R : S × A → R is a reward function, R(s, a), that represents the expected

immediate reward of performing an action a ∈ A in a state s ∈ S.

Figure 2.1 illustrates the casual relationships of a single time step of an MDP. At

each time step in a problem of either an infinite horizon h =∞ or a finite horizon

h ∈ N, the agent is in a state s ∈ S. When the agent performs an action a ∈ A in a

state s ∈ S, there is a reward and a transition: the agent gains a reward of R(s, a) ∈ R

and transitions to a successor state s′ ∈ S with a probability of T (s, a, s′) ∈ [0, 1]. The

agent repeats these steps indefinitely if the problem has an infinite horizon h =∞ or

until reaching a horizon h ∈ N if the problem has a finite horizon h ∈ N.

A solution to an MDP is a policy that indicates the action that the agent should

perform in each state at each time step. The policy is used in an objective function

that describes the value of each state at each time step with respect to that policy.

17

Figure 2.1: A Bayesian network for the casual relationships of an MDP.

The value of each state at each time step with respect to the policy is the expected

cumulative reward that the agent would gain starting in that state and performing

actions indicated by that policy until reaching the horizon. The expected cumulative

reward is discounted in infinite horizon problems and undiscounted in finite horizon

problems. In general, the goal of the agent is to find an optimal policy with an

objective function that maximizes the value of each state at each time step over

either an infinite horizon h =∞ or a finite horizon h ∈ N. We describe the objective

functions for infinite horizon problems and finite horizon problems below.

2.2.1.1 Infinite Horizon Problems

In an MDP with an infinite horizon h =∞ of a set of time steps T = {1, 2, . . . ,∞}

and a discount factor γ ∈ [0, 1), a policy π : S → A indicates that the agent should

perform an action π(s) ∈ A in a state s ∈ S. The goal of the agent is to find an

optimal policy π∗ : S → A with an objective function that maximizes the value, or

the expected discounted cumulative reward, over all states of the MDP:

E
[∞∑
t=0

γtR(st, π(st))|π
]
, (2.1)

18

where st ∈ S is a random variable that represents the state at a time step t ∈ T

generated by following the transition function T : S × A× S → [0, 1]. Note that the

time step does not need to be included in the representation of the policy or the value

function in the case of infinite horizon problems.

For a policy π : S → A, the state-value function V π : S → R is the value, or the

expected discounted cumulative reward, for each state s ∈ S of the MDP using the

Bellman equation:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′). (2.2)

For a policy π : S → A, the action-value function Qπ : S × A → R is the value,

or the expected discounted cumulative reward, for each state s ∈ S and each action

a ∈ A of the MDP:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V π(s′). (2.3)

By using either the state-value function V π : S → R or the action-value function

Qπ : S × A → R of a policy π : S → A, it is possible to define the state-value

function V ∗ : S → R of an optimal policy π∗ : S → A that maximizes the value, or

the expected discounted cumulative reward, for each state s ∈ S of the MDP using

the Bellman optimality equation:

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

(2.4)

= max
a∈A

Q∗(s, a). (2.5)

Once the optimal action-value function Q∗ : S × A→ R has been calculated, the

optimal policy π∗ : S → A can be calculated by performing a one-step lookahead over

19

each action a ∈ A of the MDP in the following way:

π∗(s) = arg max
a∈A

Q∗(s, a). (2.6)

2.2.1.2 Finite Horizon Problems

In an MDP with a finite horizon h ∈ N of a set of time steps T = {1, 2, . . . , h}, a

policy π : S×T → A indicates that the agent should perform an action π(s, t) ∈ A in

a state s ∈ S at a time step t ∈ T . The goal of the agent is to find an optimal policy

π∗ : S×T → A with an objective function that maximizes the value, or the expected

undiscounted cumulative reward, over all states and all time steps of the MDP:

E
[h∑
t=0

R(st, π(st, t))|π
]
, (2.7)

where st ∈ S is a random variable that represents the state at a time step t ∈ T

generated by following the transition function T : S × A× S → [0, 1].

For a policy π : S×T → A, the state-value function V π : S×T → R is the value,

or the expected undiscounted cumulative reward, for each state s ∈ S at a time step

t ∈ T of the MDP using the Bellman equation:

V π(st, t) = R(st, π(st, t)) + γ
∑
st−1∈S

T (st, π(st, t), st−1)V π(st−1, t− 1). (2.8)

For a policy π : S ×T → A, the action-value function Qπ : S ×A×T → R is the

value, or the expected undiscounted cumulative reward, for each state st ∈ S, each

action at ∈ A, and each time step t ∈ T of the MDP:

Qπ(st, at, t) = R(st, at) + γ
∑
st−1∈S

T (st, at, st−1)V π(st−1, t− 1). (2.9)

By using either the state-value function V π : S × T → R or the action-value

function Qπ : S × A × T → R of a policy π : S × T → A, it is possible to define an

20

optimal policy π∗ : S × T → A that maximizes value, or the expected undiscounted

cumulative reward, for each state s ∈ S and each time step t ∈ T of the MDP using

the Bellman optimality equation:

V ∗(st, t) = max
a∈A

[
R(st, a) + γ

∑
st−1∈S

T (st, a, st−1)V ∗(st−1, t− 1)
]

(2.10)

= max
a∈A

Q∗(st, a, t). (2.11)

Once the optimal action-value function Q∗ : S ×A×T → R has been calculated,

the optimal policy π∗ : S × T → A can be calculated by performing a one-step

lookahead over each action a ∈ A of the MDP in the following way:

π∗(st, t) = arg max
a∈A

Q∗(st, a, t). (2.12)

2.2.1.3 Stochastic Shortest Path Problems

Although MDPs are a standard formal sequential decision-making model that has

been widely used in many applications, there is another formulation of MDPs that

has been widely used as well. A stochastic shortest path problem (SSP) is

an MDP with an initial state, a goal state, and a cost function instead of a reward

function [82]. Intuitively, in an SSP, the agent must go from an initial state to a goal

state in the least amount of cumulative cost. Since there is an initial state and a goal

state, an SSP has an indefinite horizon, which means that the horizon is finite but

unknown a priori. An SSP can be described as a tuple, 〈S,A, T, C, s0, sg〉, where

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A× S → [0, 1] is a transition function, T (s, a, s′) = Pr(s′|s, a), that

represents the probability of reaching a state s′ ∈ S after performing an action

a ∈ A in a state s ∈ S,

21

• C : S × A → R+ is a cost function, C(s, a), that represents the expected

immediate cost of performing an action a ∈ A in a state s ∈ S,

• s0 ∈ S is an initial state, and

• sg ∈ S is a goal state such that the transition probability T (sg, a, sg) is 1 and

the cost C(sg, a) is 0 for each action a ∈ A, which means that the goal state sg

is an absorbing state with nil cost.

In an SSP with an indefinite horizon h ∈ N of a set of time steps T = {1, 2, . . . , h}

where the horizon h ∈ N is finite but unknown a priori, a policy π : S → A indicates

that the agent should perform an action π(s) ∈ A in a state s ∈ S. The goal of

the agent is to find an optimal policy π∗ : S → A with an objective function that

minimizes the value, or the expected undiscounted cumulative cost, over all states of

the SSP:

E
[∞∑
t=0

C(st, π(st))|π, s0

]
, (2.13)

where st ∈ S is a random variable that represents the state at a time step t ∈ T

generated by following the transition function T : S × A× S → [0, 1]. Note that the

time step does not need to be included in the representation of the policy or the value

function in the case of indefinite horizon problems.

For a policy π : S → A, the state-value function V π : S → R is the value, or the

expected undiscounted cumulative cost, for each state s ∈ S of the SSP using the

Bellman equation:

V π(s) = C(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′)]. (2.14)

For a policy π : S → A, the action-value function Qπ : S×A→ R is the value, or

the expected undiscounted cumulative cost, for each state s ∈ S of the SSP:

22

Qπ(s, a) = C(s, a) + γ
∑
s′∈S

T (s, a, s′)V π(s′). (2.15)

By using either the state-value function V π : S → R or the action-value function

Qπ : S × A → R of a policy π : S → A, it is possible to define the state-value

function V ∗ : S → R of an optimal policy π∗ : S → A that minimizes the value, or

the expected undiscounted cumulative cost, for each state s ∈ S of the SSP using the

Bellman optimality equation:

V ∗(s) = max
a∈A

[
C(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

(2.16)

= max
a∈A

Q∗(s, a). (2.17)

Once the optimal action-value function Q∗ : S × A→ R has been calculated, the

optimal policy π∗ : S → A can be calculated by performing a one-step lookahead over

each action a ∈ A of the SSP in the following way:

π∗(s) = arg max
a∈A

Q∗(s, a). (2.18)

It is important to observe that a formal sequential decision-making model is an

SSP if it satisfies two important conditions below.

1. There must exist a proper policy, which is a policy that has a probability of

1 of reaching the goal state sg ∈ S as the time step t ∈ T approaches ∞.

2. Every improper policy, which is a policy that has a probability of less than

1 of reaching the goal sg ∈ S, must incur a state-value or action-value of ∞.

2.2.1.4 Relevant Concepts

There are two special types of states that are useful to discuss here. First, if the

state in which the agent starts from is known in advance, like in an SSP, we call it an

23

initial state s0 ∈ S. An initial state can be used to eliminate the need for planning

over all states by only planning for states that are reachable from the initial state.

This can be used to significantly reduce the computational requirements of computing

an optimal policy. Second, if the state in which the agent ends at is known in advance,

like in an SSP, we call it a terminal state. In some contexts, it is also called an

absorbing state. A terminal state is a state in which any action performed in that

state transitions back to that state: more formally, a state s ∈ S is terminal if the

transition probability T (s, a, s) is 1 for each action a ∈ A.

It is possible to represent the state space S or the action space A in terms of a

set of state factors or a set of action factors. For example, if we express a state

space S in terms of a set of state factors {S1, S2, . . . , SN}, the state space S is equal to

S1×S2×· · ·×SN . Similarly, if we express an action space A in terms of a set of action

factors {A1, A2, . . . , AN}, the action space A is equal to A1×A2×· · ·×AN . Generally,

while there may be specific conditions under which this does not hold given a state

space or action space with certain properties, a factored representation of a state

space or an action space is for convenience and not for computational tractability.

While the reward function R(s, a) often uses a representation in terms of the

current state s ∈ S and the current action a ∈ A of the agent, there are two other

representations. First, when the reward gained by the agent is only a function of its

current state s ∈ S, the reward function R(s) can be used. Second, when the reward

gained by the agent is a function of not only its current state s ∈ S and current action

a ∈ A but also its successor state s′ ∈ S, the reward function R(s, a, s′) can be used.

An MDP that uses one representation of the reward function can easily be mapped

to an MDP that uses another representation of the reward function.

24

2.2.2 Planning Methods

There are many planning methods that can be used to solve infinite horizon MDPs.

In general, while solving infinite horizon MDPs is P-complete in the size of the problem

in states and actions, it is common to have an exponential state space and action space

defined by every permutation of the set of state factors and the set of action factors.

We discuss several important exact planning methods for infinite horizon MDPs, such

as value iteration, policy iteration, and linear programming, that have been used as

a foundation for more sophisticated approximate planning methods.

2.2.2.1 Value Iteration

Value Iteration is an exact planning method for solving infinite horizon MDPs [20].

This planning method constructs a sequence of optimal finite horizon value functions

V ∗0 , V
∗

1 , . . . , V
∗
t . As each consecutive optimal finite horizon value function V ∗t+1 is con-

structed from the current optimal finite horizon value function V ∗t , it approaches the

optimal infinite horizon value function V ∗ as the time step t ∈ T approaches the

infinite horizon h = ∞. That is, the difference between the optimal infinite horizon

value function V ∗ and the optimal t-horizon value function V ∗t goes to zero as the

time step t ∈ T approaches the infinite horizon h =∞. For a given time step t ∈ T ,

this difference can be calculated in the following way:

lim
t→∞

max
s∈S
|V ∗(s)− V ∗t (s)| = 0,

where V ∗(s) is the optimal infinite horizon value function and V ∗t (s) is the optimal t-

horizon value function. For a given Bellman error ε, the optimal infinite horizon value

function can be calculated in a finite number of optimal t-horizon value functions.

We describe the steps of value iteration for infinite horizon MDPs for a given

Bellman error ε below.

1. Initialize a time step t = 0.

25

2. Initialize an optimal 0-horizon value function V ∗0 (s) = 0 for each state s ∈ S.

3. Repeat the following steps until the termination condition maxs∈S |V ∗t+1(s) −

V ∗t (s)| ≤ ε is satisfied.

(a) Calculate the optimal (t+1)-horizon value function V ∗t+1(s) for each state

s ∈ S using the Bellman optimality equation

V ∗t+1(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗t (s′)
]
.

(b) Increment the time step t.

4. Calculate the optimal policy π∗(s) for each state s ∈ S using the equation

π∗(s) = arg max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗t (s′)
]
.

Note that value iteration results in an approximate infinite horizon value function

that is within the following bound of the optimal infinite horizon value function:

2εγ

1− γ
.

It is important to highlight that a variant of value iteration, called asynchronous

value iteration, serves as the basis for more sophisticated approximate planning

methods that solve infinite horizon MDPs and SSPs: the Bellman optimality equation

can be applied to any state in any order as long as no state is starved indefinitely.

2.2.2.2 Policy Iteration

Policy iteration is an exact planning method for solving infinite horizon MDPs [20].

This planning methods begins with an initial 0-horizon policy π0. It then alternates

26

between a policy evaluation step that determines the value function V πt of the current

t-horizon policy πt and a policy improvement step that generates a new (t+1)-horizon

policy πt+1 based on the value function V πt of the current t-horizon policy πt.

We describe the steps of policy iteration for infinite horizon MDPs below.

1. Initialize an arbitrary 0-horizon policy π0(s) = a for each state s ∈ S with any

(random) action a ∈ A.

2. Repeat the following steps until the termination condition πt(s) = πt+1(s) is

satisfied.

• Evaluate the current policy πt(s) by calculating the value function V πt(s)

of the t-horizon policy πt(s) for each state s ∈ S using the Bellman equation

V πt(s) = R(s, πt(s)) + γ
∑
s′∈S

T (s, πt(s), s
′)V πt(s′).

• Improve the current policy πt(s) by calculating the new (t + 1)-horizon

policy πt+1 for each state s ∈ S using the equation

πt+1(s) = arg max
a∈A

[
R(s, πt(s)) + γ

∑
s′∈S

T (s, πt(s), s
′)V πt(s′)

]
.

It is important to note that policy iteration tends to converge in a smaller number

of iterations than value iteration in practice but requires more computation in each

iteration since the policy evaluation step requires solving a system of linear equations.

2.2.2.3 Linear Programming

A common approach to solving infinite horizon MDPs expresses the optimization

problem as a linear program [97]. While the standard definition of an infinite horizon

MDP is used here, it must be augmented with an initial state function d : S → [0, 1]

27

that represents the probability Pr(s) ∈ [0, 1] of starting in a state s ∈ S. In the

primal form, a set of value variables Vs for the value V (s) of each state s ∈ S are

minimized subject to a set of constraints that maintain consistent values using the

Bellman equation. We describe the primal form of the linear program below.

minimize
V

∑
s∈S

d(s)Vs

subject to Vs ≥ R(s, a) + γ
∑
s′∈S

T (s, a, s′)Vs′ ∀s ∈ S, a ∈ A

In the dual form, a set of occupancy measures µsa for the discounted number of

times an action a ∈ A is performed in a state s ∈ S is maximized subject to a set of

constraints that maintain consistent occupancy measures and nonnegative occupancy

measures. We describe the dual form of the linear program below.

maximize
µ

∑
s∈S

∑
a∈A

R(s, a)µsa

subject to
∑
a′∈A

µs
′

a′ = d(s′) + γ
∑
s∈S

∑
a∈A

T (s, a, s′)µsa ∀s′ ∈ S

µsa ≥ 0 ∀s ∈ S, a ∈ A

It is easy to calculate an optimal policy from an optimal solution to the primal

form or the dual form of the linear program by using the set of value variables Vs or

the set of occupancy measures µsa. Note that linear programming has served as the

basis of recent solution methods [103].

2.2.3 Reinforcement Learning Methods

There are many reinforcement learning methods that can be used to solve infinite

and finite horizon MDPs. To maximize a notion of value, a reinforcement learning

agent learns a policy by taking actions in its environment and observing rewards

28

from its environment. Similar to planning, the goal of reinforcement learning is to

maximize expected discounted cumulative reward over time.

E
[∞∑
t=0

γtR(st, π(st))|π
]
.

TD learning, a central approach to reinforcement learning, enables an agent to

learn an optimal policy without a model of the transition function or the reward

function. In particular, the agent can learn in TD learning in the following way.

Suppose that an agent is operates in an environment. At each time step, the agent

performs an action at ∈ A in a state st ∈ S at time step t, gains a reward signal rt,

transitions to a state st+1, and performs an action at+1 ∈ A in a state st+1 ∈ S. By

using this information, the agent can learn the optimal value function over time. We

discuss two standard reinforcement learning methods for MDPs that are based on

TD learning, specifically SARSA and Q-Learning, that have been used as the basis

for more sophisticated approximate reinforcement learning methods.

2.2.3.1 SARSA

SARSA is the on-policy form of TD learning. In on-policy control, we learn the

action-value function of the policy that is currently being followed by the agent. At

each time step t ∈ T , given a state s ∈ S, an action a ∈ A, a reward signal r ∈ R,

a successor state s′ ∈ S, and an action a′ ∈ A, the agent updates its action-value

function using the SARSA update rule:

Q(s, a)→ Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)], (2.19)

where α is a learning rate that changes the amount that the action-value function

Q(s, a) is adjusted in each update.

We describe the steps of the standard reinforcement learning method that uses

the SARSA update rule below.

29

1. Initialize an arbitrary action-value function Q(s, a) for each state s ∈ S and

each action a ∈ A.

2. Repeat the following steps for each episode 1, 2, . . . , N .

(a) Set the current state s ∈ S.

(b) Repeat for each step of the episode until the state s ∈ S is terminal or

the horizon h ∈ R is reached.

i. Select an action a ∈ A for the current state s ∈ S using a policy π(s)

calculated from the action-value function Q(s, a) and an exploration

strategy, such as softmax action selection or ε-greedy action selection.

ii. Perform the action a ∈ A.

iii. Observe a reward r ∈ R.

iv. Transition to a successor state s′ ∈ S.

v. Update the action-value function Q(s, a) using the SARSA update

rule as follows:

Q(s, a)→ Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)].

vi. Set the state s ∈ S to the successor state s′ ∈ S.

2.2.3.2 Q-Learning

Q-Learning is an off-policy form of TD learning. In off-policy control, we learn

the action-value function of the policy that differs from the policy currently being

followed by the agent. At each time step t ∈ T , given a state s ∈ S, an action a ∈ A,

30

a reward signal r ∈ R, and a successor state s′ ∈ S, the agent updates its action-value

function using the Q-Learning update rule:

Q(s, a)→ Q(s, a) + α[r + γmax
a′∈A

Q(s′, a′)−Q(s, a)], (2.20)

where α is a learning rate that changes the amount that the action-value function

Q(s, a) is adjusted in each update.

We describe the steps of the standard reinforcement learning method that uses

the Q-Learning update rule below.

1. Initialize an arbitrary action-value function Q(s, a) for each state s ∈ S and

each action a ∈ A.

2. Repeat the following steps for each episode 1, 2, . . . , N .

(a) Set the current state s ∈ S.

(b) Repeat for each step of the episode until the state s ∈ S is terminal or

the horizon h ∈ R is reached.

i. Select an action a ∈ A for the current state s ∈ S using a policy π(s)

calculated from the action-value function Q(s, a) and an exploration

strategy, such as softmax action selection or ε-greedy action selection.

ii. Perform the action a ∈ A.

iii. Observe a reward r ∈ R.

iv. Transition to a successor state s′ ∈ S.

v. Update the action-value function Q(s, a) using the Q-Learning up-

date rule as follows:

Q(s, a)→ Q(s, a) + α[r + γmax
a′∈A

Q(s′, a′)−Q(s, a)].

vi. Set the state s ∈ S to the successor state s′ ∈ S.

31

2.3 Partially Observable Markov Decision Processes

A partially observable Markov decision process is a formal sequential decision-

making model for reasoning in partially observable, stochastic environments [134, 76].

A partially observe Markov decision process is an MDP with two extra components:

a set of observations made by the agent and an observation function. At each time

step, when the agent performs an action in a state, the agent not only receives a

reward based on the reward function and transitions to a successor state based on the

transition function but also makes an observation based on the observation function.

Similarly, the goal of the agent is to maximize some notion of value over all states.

2.3.1 Formal Definition

A partially observable Markov decision process (POMDP) can be de-

scribed as a tuple, 〈S,A, T,R,Ω, O〉, where

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A× S → [0, 1] is a transition function, T (s, a, s′) = Pr(s′|s, a), that

represents the probability of reaching a state s′ ∈ S after performing an action

a ∈ A in a state s ∈ S,

• R : S × A → R is a reward function, R(s, a), that represents the expected

immediate reward of performing an action a ∈ A in a state s ∈ S,

• Ω is a finite set of observations, and

• O : S × A × Ω → [0, 1] is an observation function, O(s, a, ω) = Pr(ω|s′, a),

that represents the probability of making an observation ω ∈ Ω after performing

an action a ∈ A and reaching a state s′ ∈ S.

32

Figure 2.2: A Bayesian network for the casual relationships of a POMDP.

Figure 2.2 illustrates the casual relationships of a single time step of a POMDP.

At each time step in a problem of either an infinite horizon h = ∞ or a finite

horizon h ∈ N, the agent is in a state s ∈ S. When the agent performs an action

a ∈ A in a state s ∈ S, there is a reward and a transition: the agent gains a reward

of R(s, a) ∈ R and transitions to a successor state s′ ∈ S with a probability of

T (s, a, s′) ∈ [0, 1]. Once the agent has transitioned to a successor state s′ ∈ S after

performing action a ∈ A, the agent makes an observation ω ∈ Ω with a probability

of O(s, a, ω) ∈ [0, 1]. The agent repeats these steps indefinitely if the problem has an

infinite horizon h = ∞ or until reaching a horizon h ∈ N if the problem has a finite

horizon h ∈ N.

It is important to mention that the agent does not necessarily know its current

state s ∈ S. Instead, the agent makes noisy observations ω ∈ Ω that reflect its

current state s ∈ S and current action a ∈ A. More formally, in order to represent

its uncertainty, the agent maintains a belief state b ∈ B, a probability distribution

Pr(s|b) over each state s ∈ S, where B = ∆|S| is the space of all belief states. In

general, since the belief state summarizes the entire history of states, actions, and

observations that are encountered by the agent in a partially observable stochastic

33

environment, the belief state satisfies the Markov property. Initially, the agent begins

with an initial belief state b0 ∈ B. After performing an action a ∈ A and making an

observation ω ∈ Ω, the agent updates its current belief state b ∈ B to a new belief

state b′ ∈ B using the belief state update equation:

b′(s′|b, a, ω) =
O(a, s′, ω)

∑
s∈S T (s, a, s′)b(s)

Pr(ω|b, s′)
, (2.21)

where Pr(ω|b, s′) is the probability that the agent observes an observation ω ∈ Ω

given that the agent has a belief state b ∈ B in a state s′ ∈ S, which serves as a

normalization constant. Note that the notation b′a,ω is used to represent the successor

belief state generated by the belief state update equation for a belief state b ∈ B, an

action a ∈ A, and an observation ω ∈ Ω.

A solution to a POMDP is a policy that indicates the action that the agent should

perform in each belief state at each time step. That is, instead of using a policy based

on its current state, the agent uses a policy based on its current belief state. Like an

MDP, however, the policy is used in an objective function that describes the value

of each state at each time step with respect to that policy. The value of each state

at each time step with respect to the policy is the expected cumulative reward that

the agent would gain starting in that belief state and performing actions indicated by

that policy until reaching the horizon. The expected cumulative reward is discounted

in infinite horizon problems and undiscounted in finite horizon problems. In general,

the goal of the agent is to find an optimal policy with an objective function that

maximizes the value of each belief state at each time step over either an infinite

horizon h = ∞ or a finite horizon h ∈ N. We describe the objective functions for

infinite horizon problems and finite horizon problems below.

34

2.3.1.1 Infinite Horizons Problems

In a POMDP with an infinite horizon h = ∞ of a set of time steps T =

{1, 2, . . . ,∞} and a discount factor γ ∈ [0, 1), a policy π : B → A indicates that

the agent should perform an action π(s) ∈ A in a belief state b ∈ B. Given an initial

belief b0 ∈ B, the goal of the agent is to find an optimal policy π : B → A with an

objective function that maximizes the value, or the expected discounted cumulative

reward, over all belief states of the POMDP:

E
[∞∑
t=0

γtR(bt, π(bt))|π, b0
]
, (2.22)

where bt ∈ B is a random variable that represents the belief state at a time step

t ∈ T generated by following the transition function T : S × A× S → [0, 1] and the

observation function O : S × A× Ω → [0, 1]. Note that the time step does not need

to be included in the representation of the policy or the value function in the case of

infinite horizon problems.

For a policy π : B → A, the state-value function V π : B → R is the value, or the

expected discounted cumulative reward, for each belief state b ∈ B of the POMDP

using the Bellman equation:

V π(b) =
∑
s∈S

b(s)R(s, π(b)) + γ
∑
ω∈Ω

Pr(ω|b, π(b))V π(b′π(b),ω). (2.23)

For a policy π : B → A, the action-value function Qπ : B × A → R is the value,

or the expected discounted cumulative reward, for each belief state b ∈ B and each

action a ∈ A of the POMDP:

Qπ(b, a) =
∑
s∈S

b(s)R(s, π(b)) + γ
∑
ω∈Ω

Pr(ω|b, a)V π(b′a,ω). (2.24)

By using either the state-value function V π : B → R or the action-value function

Qπ : B × A → R of a policy π : B → A, it is possible to define the state-value

35

function V ∗ : B → R of an optimal policy π∗ : B → A that maximizes the value,

or the expected discounted cumulative reward, for each belief state b ∈ B of the

POMDP using the Bellman optimality equation:

V ∗(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
ω∈Ω

Pr(ω|b, π(b))V π(b′π(b)ω)
]

(2.25)

= max
a∈A

Q∗(b, a). (2.26)

Once the optimal action-value function Q∗ : B ×A→ R has been calculated, the

optimal policy π∗ : B → A can be calculated by performing a one-step lookahead

over each action a ∈ A of the MDP in the following way:

π∗(b) = arg max
a∈A

Q∗(b, a). (2.27)

It is important to highlight that, while infinite horizon POMDPs are an interesting

framework for theoretical analysis, they are undecidable for most problems because

there can be an infinite space of belief states with or without an initial belief state.

2.3.1.2 Finite Horizon Problems

In a POMDP with a finite horizon h ∈ N of a set of time steps T = {1, 2, . . . , h}

and a discount factor γ ∈ [0, 1), a policy π : B → A indicates that the agent should

perform an action π(b) ∈ A in a belief state b ∈ B. Given an initial belief b0 ∈ B, the

goal of the agent is to find an optimal policy π : B → A with an objective function

that maximizes the value, or the expected discounted cumulative reward, over all

belief states and all time steps of the POMDP:

E
[∞∑
t=0

γtR(bt, π(bt))|π, b0
]
, (2.28)

36

where bt ∈ B is a random variable that represents the belief state at a time step

t ∈ T generated by following the transition function T : S × A× S → [0, 1] and the

observation function O : S × A× Ω→ [0, 1].

However, instead of using a policy π : B → A, we use another representation

in the interest of clarity for this discussion. At a time step t ∈ T , a policy tree

σt ∈ Γt is a tuple, 〈a, υt〉, where a ∈ A is an action that should be performed by

the agent and υt : Ω → Γt−1 is an observation strategy that indicates a policy tree

σt−1 ∈ Γt−1 that should be followed after making an observation ω ∈ Ω. Given a set

of observation strategies Γt−1, the set of policy trees Γt available to the agent with t

time steps remaining in the problem is defined by the set below:

Γt = {〈at, υt〉 | at ∈ A, υt ∈ Γt−1}.

Note that a policy tree is only represented by an action a ∈ A without an observation

strategy when there are no time steps remaining in the problem since the agent does

not need to make an observation ω ∈ Ω to select a policy tree at the final time step.

By representing a policy π : B → A as a policy tree σt = 〈a, υt〉 ∈ Γt with an

action a ∈ A and an observation strategy υt : Ω→ Γt−1 at each time step t ∈ T , the

state-value function for each state s ∈ S can be represented like so:

V π
t (s) = V σt

t (s) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)
∑
ω∈Ω

O(s, a, ω)V υt(o)(s′). (2.29)

Given the state-value function V π
t (s) = V σt

t (s) and a policy tree σt = 〈a, υt〉 ∈ Γt

with an action a ∈ A and an observation strategy υt : Ω → Γt−1 at each time step

t ∈ T , it is possible to define a value function for each belief state b ∈ B in the

following way:

V π
t (b) = V σt

t (b) =
∑
s∈S

b(s)V σt
t (s). (2.30)

37

Using a state-value function V π
t (s) = V σt

t (s) for each state s ∈ S, the optimal

value function for each belief state b ∈ B can be calculated as follows:

V ∗t (b) = max
σ∈Γt

∑
s∈S

b(s)V
σt(s)
t (s). (2.31)

The optimal value function V ∗t (b) for each belief state b ∈ B can be viewed as the

upper surface of all of the state-value functions V
σt(s)
t (s) that represent each policy

tree σt = 〈a, υt〉 ∈ Γt with an action a ∈ A and an observation strategy υt : Ω→ Γt−1

at a time step t ∈ T . The optimal value function V ∗t (b) is therefore piecewise linear

and convex. It is therefore possible to write the optimal value function V ∗t (b) in

another representation. Let us first define an α-vector ασ as a vector that contains

the optimal value of each state s ∈ S with respect to the policy tree σ ∈ Γ:

ασ = [V σ(s0), V σ(s1), . . . , V σ(sn)].

By representing the value function V σ
t (b) as a set of α-vector ασ for a policy tree

σ ∈ Γ, we can rewrite the optimal value function V ∗t (b) in the following way:

V ∗t (b) = max
σ∈Γt

∑
s∈S

b(s)ασ(s) = max
α∈Vt

∑
s∈S

b(s)α(s), (2.32)

where Vt is the set of all α-vectors such that each α-vector uniquely represents a

policy tree σ ∈ Γt at a time step t ∈ T .

2.3.1.3 Belief Markov Decision Processes

An infinite horizon POMDP or a finite horizon POMDP can be cast as a continu-

ous space MDP with a state space that is the set of belief states and an action space

that is the set of actions from the original POMDP. This is typically called a belief

MDP. A belief MDP can be described as a tuple, 〈B,A, τ, ρ〉, where

38

1. B = ∆|S| is the set of belief states from the original POMDP,

2. A is the set of actions from the original POMDP,

3. τ : B×A×B → [0, 1] is the belief transition function, τ(b, a, b′) = Pr(b′|b, a),

that represents the probability of reaching a belief state b′ ∈ B after performing

an action a ∈ A in a belief state B ∈ B, and

4. ρ : B × A → R is the belief reward function, ρ(b, a), that represents the

expected immediate reward of performing an action a ∈ A in a belief state

b ∈ B

It is possible to represent the belief transition function τ(b, a, b′) and the belief

reward function ρ(b, a) in terms of the original formulation of the POMDP. The belief

transition function τ(b, a, b′) can be represented in the following way:

τ(b, a, b′) =
∑
ω∈Ω

Pr(b′|a, b, ω)
∑
s′∈S

O(s, a, ω)
∑
s∈S

T (s, a, s′)b(s), (2.33)

where Pr(b′|a, b, ω) can be defined as [ba,ω = b′] with Iverson bracket notation [·]. The

belief reward function ρ(b, a) can be represented in the following way:

ρ(b, a) =
∑
s∈S

b(s)R(s, a). (2.34)

In a belief MDP, the optimal state-value function V ∗ : B → R for a belief b ∈ B

that can be used to calculate the optimal policy π∗ : B → A is as follows:

V ∗(b) = max
a∈A

[
ρ(b, a) + γ

∑
ω∈Ω

Pr(ω|b, a)V ∗(b′a,ω)
]
. (2.35)

39

In a belief MDP, the optimal action-value function Q∗ : B × A → R for a belief

b ∈ B that can be used to calculate the optimal policy π∗ : B → A is as follows:

Q∗(b, a) = ρ(b, a) + γ
∑
ω∈Ω

Pr(ω|b, a)V ∗(b′a,ω). (2.36)

Finally, we can calculate the optimal policy π∗ : B → A by performing a one-stop

look-ahead over the optimal action-value function Q∗ : B × A→ R:

π∗(b) = arg max
a∈A

Q∗(b, a).

2.3.2 Planning Methods

There are many planning methods that can be used to solve infinite horizon

POMDPs. We discuss an important exact planning method for infinite horizon

POMDPs, value iteration, that has been used as a foundation for more sophisticated

approximate planning methods [94, 32, 110, 135].

2.3.2.1 Value Iteration

Value Iteration is a standard exact planning method for solving infinite horizon

POMDPs [20]. This planning method constructs a sequence of optimal finite horizon

value functions V ∗0 , V
∗

1 , . . . , V
∗
t . As each consecutive optimal finite horizon value func-

tion V ∗t+1 is constructed from the current optimal finite horizon value function V ∗t ,

it approaches the optimal infinite horizon value function V ∗ as the time step t ∈ T

approaches the infinite horizon h = ∞. That is, the difference between the optimal

infinite horizon value function V ∗ and the optimal t-horizon value function V ∗t goes

to zero as the time step t ∈ T approaches the infinite horizon h = ∞. For a given

time step t ∈ T , this difference can be calculated in the following way:

lim
t→∞

max
b∈B
|V ∗(b)− V ∗t (b)| = 0,

40

where V ∗(b) is the optimal infinite horizon value function and V ∗t (b) is the optimal t-

horizon value function. For a given Bellman error ε, the optimal infinite horizon value

function can be calculated in a finite number of optimal t-horizon value functions.

We describe the steps of value iteration for infinite horizon POMDPs in terms of

a belief MDP 〈B,A, τ, ρ〉 for a given Bellman error ε below.

1. Initialize a time step t = 0.

2. Initialize an optimal 0-horizon value function V ∗0 (b) = 0 for each belief state

b ∈ B.

3. Repeat the following steps until the termination condition maxb∈B |V ∗t+1(b) −

V ∗t (b)| ≤ ε is satisfied.

(a) Calculate the optimal (t+1)-horizon value function V ∗t+1(b) for each belief

state b ∈ B using the Bellman optimality equation

V ∗t+1(b) = max
a∈A

[
ρ(b, a) + γ

∑
ω∈Ω

Pr(ω|b, a)V ∗(b′a,ω)
]
.

(b) Increment the time step t.

4. Calculate the optimal policy π∗(b) for each belief state b ∈ B using the equation

π(b) = arg max
a∈A

[
ρ(b, a) + γ

∑
ω∈Ω

Pr(ω|b, a)V ∗(b′a,ω)
]
.

Note that value iteration results in an approximate infinite horizon value function

that is within the following bound of the optimal infinite horizon value function:

2εγ

1− γ
.

41

CHAPTER 3

METAREASONING FOR STOPPING

3.1 Introduction

Starting with metareasoning for planning, we offer two metareasoning approaches

that enable autonomous systems to determine the optimal stopping point of anytime

algorithms. Anytime algorithms have been developed for a wide range of real-time

decision-making problems, such as belief-space planning [110, 135, 86], probabilistic

inference [115], heuristic search [61, 116, 105, 30, 35], motion planning [19, 157, 95, 77],

constraint satisfaction [161], and object detection [181, 176, 78, 117]. Simply put, an

anytime algorithm is an algorithm that gradually improves the quality of the current

solution as it runs and returns the current solution if it is interrupted. This behavior

offers a trade-off between solution quality and computation time that has proven to

be useful in autonomous systems that need to produce effective action in a timely

manner. However, in order to optimize this trade-off, an autonomous system has to

solve a challenging meta-level control problem: the autonomous system must decide

when to interrupt the anytime algorithm and act on the current solution.

Generally, there have been two main approaches to meta-level control of anytime

algorithms in autonomous systems. The earliest approach that was proposed executes

the anytime algorithm until a stopping point determined prior to runtime [66, 27].

Because the stopping point is not adjusted once the anytime algorithm starts, this

approach is called fixed allocation. While fixed allocation is effective given negli-

gible uncertainty in the performance of the anytime algorithm or the urgency for

the solution, there is often substantial uncertainty in either or both these variables in

42

real-time decision-making problems [108]. In response, a more sophisticated approach

that was developed tracks the performance of the anytime algorithm and estimates

a stopping point at runtime periodically [67, 182, 60, 92]. Since the stopping point

is adjusted as the anytime algorithm is running, this approach is called monitoring

and control. Overall, monitoring and control has proven to be a substantially more

effective approach to meta-level control of anytime algorithms than fixed allocation.

Current meta-level control techniques that monitor and control anytime algo-

rithms have traditionally relied on planning with a model, called a performance pro-

file, that describes the performance of a given anytime algorithm solving a specific

problem on a particular system [177, 60]. This model must be compiled offline through

simulation before the activation of meta-level control by using the anytime algorithm

to solve thousands of instances of the problem on the system. Planning with a

performance profile, however, imposes many assumptions that are often violated by

autonomous systems that operate in the real world [149, 150]:

• There must be enough time for offline compilation of the performance profile of

the anytime algorithm prior to the activation of meta-level control.

• The parameters of the anytime algorithm across every problem instance must

not change over time to avoid invalidating the performance profile.

• The distribution of problem instances solved by the anytime algorithm must be

known and fixed to compile and avoid invalidating the performance profile.

• The processor and memory conditions of the system that executes the anytime

algorithm must be static to avoid invalidating the performance profile.

In short, by using a performance profile that must be compiled offline and cannot be

updated online, existing meta-level control techniques make a number of assumptions

that reduce their accuracy and usefulness in the real world.

43

3.1.1 Contributions

In this chapter, we make the following contributions. First, we propose a novel

model-based approach to meta-level control based on online performance prediction

by offering these contributions:

1. a online performance prediction framework that can be used by a meta-level

control technique to predict the performance of an anytime algorithm, and

2. a model-based meta-level control technique that determines when to interrupt

an anytime algorithm and act on the current solution by using the online per-

formance prediction framework.

Second, we propose a novel model-free approach to meta-level control based on rein-

forcement learning by offering these contributions:

3. a formal MDP representation of the meta-level control problem for anytime

algorithms that can be used to learn the optimal stopping point of an anytime

algorithm with reinforcement learning, and

4. a model-free meta-level control technique that learns when to interrupt an any-

time algorithm and act on the current solution by using the formal MDP rep-

resentation of the meta-level control problem for anytime algorithms.

Our work is evaluated on a set of experiments that show that they outperform existing

meta-level control techniques that require substantial offline work on several common

benchmark domains and a mobile robot domain.

3.2 Meta-Level Control Problem

We begin by reviewing the meta-level control problem for anytime algorithms.

This problem requires a model that describes the utility of a solution computed by

an anytime algorithm. Naturally, in real-time decision-making problems, a solution

44

Figure 3.1: An example of the meta-level control problem.

of a specific quality calculated in a minute has lower utility than a solution of the

same quality calculated in a second. At a minimum, this implies that the utility

of a solution is likely a function of not only its quality but also its computation

time [65, 27]. Following this line of intuition, we define the utility of a solution below.

Definition 1. A time-dependent utility function, U : Φ × Ψ → R, represents

the utility of a solution of quality q ∈ Φ at time step t ∈ Ψ.

A time-dependent utility function can often be simplified by expressing it as

the difference between two functions typically referred to as object-level utility and

inference-level utility [64]. Object-level utility represents the utility of a solution by

considering its quality but disregarding its computation time while inference-level

utility represents the utility of a solution by taking into account its computation time

but ignoring its quality. Therefore, adopting more recent terminology [121], we define

this property as follows [60].

Definition 2. A time-dependent utility function, U : Φ×Ψ→ R, is time-separable

if the utility of a solution of quality q ∈ Φ at time step t ∈ Ψ can be expressed as the

difference between two functions, U(q, t) = UI(q)− UC(t), where UI : Φ→ R+ is the

intrinsic value function and UC : Ψ→ R+ is the cost of time.

Given a time-dependent utility function, the meta-level control problem is the

problem in which an autonomous system must decide when to interrupt an anytime

45

algorithm and act on the current solution. Figure 3.1 provides an illustration of the

meta-level control problem [177]. In this illustration, the algorithm should ideally be

interrupted at the optimal stopping point because this is the maximum point of the

time-dependent utility function. In practice, however, the optimal stopping point can

rarely be determined as a result of considerable uncertainty over two variables: the

performance of the algorithm and the urgency for the solution. The optimal stopping

condition must therefore be approximated using an approach that models either or

both of these variables. Note that we assume that there is only uncertainty about

the performance of the algorithm throughout this chapter following earlier work [60].

3.3 Model-Based Metareasoning with Online Performance

Prediction

We first propose a novel model-based meta-level control approach based on online

performance prediction. This section offers an online performance prediction frame-

work that can be used by a meta-level control technique to predict the performance

of an anytime algorithm. Existing meta-level control techniques instead use a per-

formance profile as a function in terms of a state of computation that represents the

computation time and the quality of the current solution to predict the expected

quality of the next solution [37, 67, 60]. Relying on a performance profile, however,

has several drawbacks because it requires significant preprocessing that can decrease

the accuracy and usefulness of meta-level control in real world domains.

We define a pair of vectors that jointly represent the performance of an anytime

algorithm in place of a performance profile. The first vector represents the past

performance of the anytime algorithm as it currently solves a specific instance of a

problem. Past performance can be expressed as a vector of solution qualities from the

initial solution to the current solution observed over the elapsed time of the anytime

algorithm. More formally, we describe past performance in the following way.

46

Definition 3. A performance history, ~h, represents the past performance of an

anytime algorithm on a given instance of a problem as a vector of solution qualities,

~h = [q0 q1 . . . qt], observed from the start time step 0 to the current time step t at

fixed intervals of a duration ∆.

The second vector represents the future performance of an anytime algorithm as it

currently solves a specific instance of a problem. Future performance can be expressed

as a vector of solution qualities from the current solution to the final solution pro-

jected over the remaining time of the anytime algorithm. More formally, we describe

future performance in the following way.

Definition 4. A performance projection, ~p, represents the future performance

of an anytime algorithm on a given instance of a problem as a vector of solution

qualities, ~p = [qt+1 qt+2 . . . qT], projected from the time step t + 1 to the final time

step T at fixed intervals of a duration ∆ such that the final time step T is an upper

bound on the computation time allocated to the anytime algorithm.

We use the past performance of the anytime algorithm on the specific instance

of the problem currently being solved to predict its future performance. This can

be viewed as a function that computes a performance projection from a performance

history. It is possible for this function to be implemented in many different ways. In

most cases, a simple method, such as nonlinear regression, can compute a sensible

performance projection from a performance history. In other cases, a more complex

method that uses a rich model, such as neural network or a regression tree, that

includes features that describe the problem, the anytime algorithm, or the underlying

system can be used instead [15, 68, 172]. However, a rich model must be adapted to

an online context to avoid the drawbacks of a performance profile. It is also possible

for this function to compute performance projections from a weighted performance

history with a bias toward recent solution qualities. Here, without committing to a

specific implementation, we provide a general definition of this function below.

47

Figure 3.2: An illustration of online performance prediction.

Definition 5. A performance predictor, Ξ(~h) = ~p, generates a performance pro-

jection ~p from a performance history ~h.

Figure 3.2 offers an intuitive depiction of a performance predictor. Recall that the

performance history is a sequence of solution qualities observed from the start time

step to the current time step of the anytime algorithm while each performance pro-

jection is a sequence of solution qualities projected after the current time step to the

final time step of the anytime algorithm. Ideally, the performance predictor computes

performance projections that approach the true performance of an anytime algorithm

as the size of the performance history increases. For instance, at the ith time step, the

performance projection ~p i does not closely approximate the true performance ~p ∗: in

fact, it appears to be overly optimistic. However, at the (i+ 1)th time step, the next

performance projection ~p i+1 draws closer to the true performance ~p ∗. Intuitively, as

the performance predictor exploits more information from the solution qualities in

the performance history, we observe that the performance projections approach the

true performance of an anytime algorithm in practice in our experiments.

3.4 Model-Based Meta-Level Control Technique

This section offers a model-based meta-level control technique that determines

when to interrupt an anytime algorithm and act on the current solution by using

48

Algorithm 1: A general approach to model-based meta-level control that
determines when to interrupt an anytime algorithm and act on the current
solution by using online performance prediction.

Input: An anytime algorithm Λ, a performance predictor Ξ, a projected
stopping condition C, and a duration ∆

Output: A solution α
1 t← 0

2 ~h← []
3 Λ.Start()

4 while Λ.Running() do
5 α← Λ.CurrentSolution()
6 q ← α.Quality()

7 ~h← ~h‖q

8 ~p = Ξ(~h)

9 if C(~p) then
10 Λ.Stop()
11 return α

12 t← t+ ∆
13 Sleep(∆)

14 return α

the online performance prediction framework. Similar to earlier work, our meta-level

control technique monitors the performance of the anytime algorithm and estimates

the stopping point at runtime [67, 28, 182, 60]. However, unlike existing meta-level

control techniques that rely on planning with a performance profile that must be

compiled offline before the activation of meta-level control, our meta-level control

technique uses the online performance prediction framework: at each monitoring

step, it computes a performance projection from a growing performance history using

a performance predictor. Our meta-level control technique therefore avoids relying on

significant preprocessing that can decrease the accuracy and usefulness of meta-level

control of anytime algorithms.

Algorithm 1 outlines the general form of our meta-level control technique. First,

the current time step is initialized, the performance history is initialized to an empty

49

vector, and the anytime algorithm is started (Lines 1-3). Next, the performance of

the algorithm is monitored at fixed intervals until interrupted early or terminated

naturally (Line 4). During each monitoring step, there are several steps. The qual-

ity of the current solution is appended to the performance history (Lines 5-7) and a

performance projection is computed from that performance history using the perfor-

mance predictor (Line 8). If the performance projection meets the stopping condition,

which we describe in detail later in the chapter, the anytime algorithm is interrupted

and the current solution is returned (Lines 9-11). Otherwise, the anytime algorithm

continues to run (Lines 12-13). Finally, the current solution is returned if the anytime

algorithm is terminated naturally but not interrupted early (Line 14).

In general, any meta-level control technique uses a stopping condition to determine

whether or not an anytime algorithm should be interrupted. If the stopping condition

evaluates to true, the meta-level control technique interrupts the anytime algorithm.

Otherwise, it lets the anytime algorithm continue to run. An optimal stopping condi-

tion interrupts the anytime algorithm when the expected value of computation (EVC)

is no longer positive, where the EVC can be expressed as the expected improvement

of the time-dependent utility of the current solution [67]. However, to calculate the

EVC, the meta-level control technique must consider the entire sequence of remaining

decisions about whether to continue or interrupt the algorithm. Hence, because such

a calculation is often intractable, meta-level control uses an estimate of the EVC in

practice. Given this line of reasoning, our meta-level control technique uses a stop-

ping condition that depends on the projected performance of an anytime algorithm.

We call this a projected stopping condition and denote it as C(~p) in Algorithm 1. We

develop two projected stopping conditions below.

50

3.4.1 Myopic Projected Stopping Condition

The first projected stopping condition uses the projected one-step improvement

of the time-dependent utility of the current solution to determine whether or not the

anytime algorithm should be interrupted. More formally, this myopic improvement

can be expressed as the difference between two time-dependent utilities: the time-

dependent utility of the projected next solution and the time-dependent utility of the

current solution. We define myopic improvement in the following way.

Definition 6. Suppose that an anytime algorithm computes a solution of quality q ∈ Φ

at time step t ∈ Ψ. The myopic projected value of computation (MPVC) is

MPVC(q, t,∆) = U(pt+∆, t+ ∆)− U(q, t)

for an additional duration ∆ given the current performance projection ~p.

Our meta-level control technique allows the anytime algorithm to continue to run

while the MPVC is positive: simply put, the anytime algorithm executes as long as

the projected one-step improvement of the current solution is positive. We define our

myopic stopping condition below.

Definition 7. The meta-level control technique with the myopic stopping condi-

tion lets an anytime algorithm continue as long as MPVC(q, t,∆) > 0.

We call this version of our technique the myopic meta-level control technique.

If the performance of the anytime algorithm is strictly concave, our myopic meta-

level control technique will interrupt the algorithm at the optimal stopping point near

the global maximum of the time-dependent utility. Intuitively, when the performance

of the anytime algorithm is concave, the benefit of continuing the anytime algorithm

diminishes over time. Thus, if our myopic meta-level control technique decides to

interrupt the anytime algorithm, that decision will remain optimal at any later time

51

step. However, the performance of the anytime algorithm often includes steps with

little or no improvement. In this more likely case, since our myopic meta-level control

technique only considers the very next solution, it may interrupt the anytime algo-

rithm too early near a local maximum of the time-dependent utility. Hence, we define

a more accurate but more computationally demanding projected stopping condition

to relax the assumption that the performance of the anytime algorithm is concave.

3.4.2 Nonmyopic Projected Stopping Condition

The second projected stopping condition improves upon the first condition by

considering the projected best solution instead of the projected next solution. More

formally, this nonmyopic improvement can be expressed as the difference between two

time-dependent utilities: the time-dependent utility of the projected best solution and

the time-dependent utility of the current solution. We define nonmyopic improvement

in the following way.

Definition 8. Suppose that an anytime algorithm computes a solution of quality

q ∈ Φ at time step t ∈ Ψ. The nonmyopic projected value of computation

(NPVC) is

NPVC(q, t) = max
t′∈Ψ

U(pt′ , t
′)− U(q, t)

given the current performance projection ~p.

Our meta-level control technique allows the anytime algorithm to continue to run

while the NPVC is positive: intuitively, even if the projected one-step improvement

of the current solution is zero or negative, the anytime algorithm executes as long as

the projected future improvement of the current solution is positive. We define our

nonmyopic stopping condition below.

Definition 9. The meta-level control technique with the nonmyopic stopping con-

dition lets an anytime algorithm continue as long as NPVC(q, t) > 0.

52

We call this version of our technique the nonmyopic meta-level control technique.

Our nonmyopic meta-level control technique is not as shortsighted as our myopic

meta-level control technique. Simply put, because the nonmyopic stopping condition

uses the projected best solution in place of the projected next solution, our nonmyopic

meta-level control technique is less likely to interrupt the anytime algorithm too early

near a local maximum of the time-dependent utility. As a result, even when the

performance of the anytime algorithm includes steps with little or no improvement,

our nonmyopic meta-level control technique will still interrupt the anytime algorithm

closer to the optimal stopping point near the global maximum of the time-dependent

utility. This results in more effective meta-level control of anytime algorithms.

3.5 Model-Free Metareasoning with Reinforcement Learning

We now turn to a novel model-free approach to meta-level control based on rein-

forcement learning. This section offers a formal MDP representation of the meta-level

control problem for anytime algorithms that can be used to learn the optimal stopping

point of an anytime algorithm with reinforcement learning. Reinforcement learning

has led to a variety of methods [140] that have been effective across a range of appli-

cations from game playing [152] to helicopter control [81]. In order to maximize some

notion of value, a reinforcement learning agent can learn a policy by performing ac-

tions and observing rewards in its environment both online and incrementally. This

is critical to meta-level control of anytime algorithms for two reasons. First, because

there is often not enough time before the activation of meta-level control in real-time

environments, the policy must be compiled online. Second, since the parameters of

meta-level control often change over time in dynamic environments, the policy must

be updated incrementally. Hence, reinforcement learning is a natural approach to

meta-level control of anytime algorithms.

53

Figure 3.3: A depiction of model-free meta-level control.

Figure 3.3 illustrates how a meta-level control technique that uses a reinforce-

ment learning method learns its policy for a problem with parameters that change

gradually over time. Suppose the meta-level control technique compiles its policy

for the problem online (the green section of the first problem). When the param-

eters of the problem change (the problem transition), the policy of the meta-level

control technique may degrade in performance. In response, the meta-level control

technique updates its policy for the problem incrementally (the red section of the

second problem). Generally, if there is insufficient time before the activation of meta-

level control or the parameters of meta-level control change over time, the meta-level

control technique can learn its policy on the fly from scratch.

Although we are unaware of any model-free approach to meta-level control based

on reinforcement learning, our approach, which is compatible with work on managing

the execution of different planning models and methods [148, 147], is an especially

good fit for several reasons. First, while the transition dynamics given the perfor-

mance of an anytime algorithm may be unknown, reinforcement learning can learn an

effective policy by balancing exploitation with exploration. Next, by ignoring large

regions of the state space unlikely to be reached in practice, reinforcement learning

can reduce the overhead of learning an effective policy by learning a partial policy

that covers only reachable regions of the state space instead of a universal policy

54

that covers the entire state space. Finally, while the transition dynamics given the

performance of an anytime algorithm may be nonstationary, reinforcement learning

can maintain an effective policy by making minor adjustments with negligible over-

head. In short, meta-level control shares many properties with problems that have

traditionally been solved by reinforcement learning.

Our model-free approach to meta-level control based on reinforcement learning

expresses the meta-level control problem as an MDP. We now provide a formal de-

scription of the meta-level control problem by representing it as an MDP below.

Definition 10. The meta-level control problem for monitoring and control-

ling an anytime algorithm, Λ, is represented by an MDP 〈Φ,Ψ, S, A, T,R, s0〉

given a time-dependent utility function U : Φ×Ψ→ R:

• Φ = {q0, q1, . . . , qNΦ
} is a set of qualities for the current solution of the anytime

algorithm.

• Ψ = {t0, t1, . . . , tNΨ
} is a set of time steps for the current solution of the anytime

algorithm.

• S = Φ×Ψ is a set of states of anytime computation: each state s ∈ S indicates

that the anytime algorithm has a solution of quality q ∈ Φ at time step t ∈ Ψ.

• A = {Stop,Continue} is a set of actions of anytime computation: the Stop

action interrupts the anytime algorithm and the Continue action executes the

anytime algorithm for another time step of duration ∆.

• T : S × A × S → [0, 1] is a transition function of anytime computation that is

unknown and possibly nonstationary that represents the probability of reaching a

state s′ = (q′, t′) ∈ S after performing an action a ∈ A in a state s = (q, t) ∈ S.

• R : S × A × S → R is a reward function of anytime computation that

we define later in this chapter that represents the expected immediate reward of

55

reaching a state s′ = (q′, t′) ∈ S after performing an action a ∈ A in a state

s = (q, t) ∈ S.

• s0 ∈ S is an optional start state that is typically s0 = (q0, t0) that indicates that

the anytime algorithm has a solution of quality q0 ∈ Φ at time step t0 ∈ Ψ.

Note that the discount factor γ is set to 1 because the meta-level control problem has

an indefinite horizon since an anytime algorithm must terminate eventually [57].

The meta-level control problem has a reward function of anytime computa-

tion that describes the reward that is generated for each solution computed by the

anytime algorithm. This can be represented as a piecewise function of two compo-

nents. First, if the action is to execute the anytime algorithm for another time step,

the reward is the difference between the utility of the current solution and the utility

of the previous solution. Second, if the action is to interrupt the anytime algorithm

immediately, the reward is nil. We define the reward function in the following way.

Definition 11. Given a state of anytime computation s = (q, t) ∈ S, an action

of anytime computation a ∈ A, and a successor state of anytime computation s′ =

(q′, t′) ∈ S, the reward function of anytime computation can be represented by

the piecewise function

R(s, a, s′) =


U(q′, t′)− U(q, t), if a = Continue,

0, otherwise,

where U : Φ×Ψ→ R is a time-dependent utility function.

Note that it is easy to verify that the reward of anytime computation is consistent with

the objective of optimizing time-dependent utility: running the anytime algorithm

until a solution of quality q ∈ Φ at time step t ∈ Ψ results in a cumulative reward of

anytime computation equal to the time-dependent utility U(q, t).

56

The main objective of the meta-level control problem is to generate an optimal

policy that performs optimal meta-level control of the anytime algorithm under a set

of assumptions. Intuitively, given the assumption that the quality and computation

time of the current solution determines the quality and computation time of the

successor solution without any need for the history of solutions up until the current

solution, the meta-level control problem generates an optimal policy that produces

optimal meta-level control of the anytime algorithm. We formalize this notion below.

Remark 1. If the quality qt ∈ Φ and time step t ∈ Ψ of the current solution de-

termines the quality qt+1 ∈ Φ and time step (t + 1) ∈ Ψ of the successor solution

without any need for the history of solutions [(q0, 0), (q1, 1), . . . , (qt−1, t− 1)] up until

the current solution, the optimal policy π∗ : S → A of the meta-level control problem

determines the optimal stopping point t∗ of the anytime algorithm.

Proof Sketch. This follows directly from the Markov assumption of an MDP: the

transition dynamics over a successor state of computation s′ = (q′, t′) ∈ S only

depends on the current state of computation s = (q, t) ∈ S given an action of anytime

computation a ∈ A.

Although many approaches to meta-level control have traditionally represented

the state of computation as the quality and time step of the current solution, such

a representation may not be sufficient since the improvement in the quality of the

solution given its current quality and time step may not be Markovian. This rep-

resentation could therefore benefit from additional features that describe the state

of computation. In particular, it could include features that summarize the internal

state of the algorithm, such as the size of the open list of anytime A* [58], the instance

of the problem, such as the cluster distance of a TSP [75], or the performance of the

system, such as the memory pressure of the system. While our model-free approach

exhibits near optimal performance and fast convergence with a simple state of com-

57

putation in our experiments, it can naturally augment the state of computation by

using reinforcement learning. To this end, we describe in detail the use of a more

sophisticated state of computation in the following chapter.

3.6 Model-Free Meta-Level Control Technique

This section offers a model-free meta-level control technique that learns when to

interrupt an anytime algorithm and act on the current solution by using the formal

MDP representation of the meta-level control problem for anytime algorithms. Similar

to earlier work and the model-based meta-level control technique proposed earlier in

the chapter, our meta-level control technique monitors the performance of the anytime

algorithm and estimates the stopping point at runtime [67, 28, 182, 60]. However,

unlike existing meta-level control techniques that rely on planning with a performance

profile that must be compiled offline before the activation of meta-level control, our

meta-level control technique uses reinforcement learning to learn the policy online

and incrementally instead: it builds its policy gradually using the reward of anytime

computation each time the anytime algorithm updates its solution to the instance of

the problem at hand. By replacing offline compilation with online learning, our meta-

level control technique eliminates the unrealistic assumptions of existing meta-level

control techniques that reduce their accuracy and usefulness in the real world.

Algorithm 2 outlines the general form of our meta-level control technique. First,

the state is initialized using the initial quality and time step, the action is initialized

using the policy induced by the initial action-value function and the exploration strat-

egy, and the anytime algorithm is started for a fixed duration (Lines 1-4). Next, the

performance of the anytime algorithm is monitored at fixed intervals at interrupted

early or terminated naturally (Line 5). During each monitoring step, there are sev-

eral steps. The current solution is first retrieved from the anytime algorithm (Line 6).

The successor state is then built using the new quality and time step (Line 7). The

58

Algorithm 2: A general approach to model-free meta-level control that
learns when to interrupt an anytime algorithm and act on the current solu-
tion by using reinforcement learning.

Input: An anytime algorithm Λ, an action-value function Q, an update rule
ρ, an exploration strategy ξ, and a duration ∆t

Output: A solution σ

1 s = (q, t)← s0

2 a← πQξ (s)

3 Λ.Start()
4 Sleep(∆t)

5 while Λ.Running() do
6 σ ← Λ.CurrentSolution()

7 s′ = (q′, t′)← (σ.Quality(), t+ ∆t)

8 r ← R(s, a, s′)

9 ρ(Q, r, α)

10 a← πQξ (s′)

11 if a = Stop then
12 Λ.Stop()
13 return σ

14 s← s′

15 Sleep(∆t)

16 return σ

reward of anytime computation is subsequently calculated using the state, the action,

and the successor state (Line 8). The action-value function is in turn updated using

the update rule based on the reward of anytime computation and the learning rate

(Line 9). An action is once again selected from the policy induced by the updated

action-value function and the exploration strategy (Line 10). If the action indicates

to stop, the anytime algorithm is interrupted and the current solution is returned

(Lines 11-13). Otherwise, the state is set to the successor state and the anytime

algorithm continues to run for a fixed duration (Lines 14-15). Finally, the current

solution is returned if the anytime algorithm is terminated naturally but not inter-

59

rupted early (Line 16). Note that the action-value function can easily be represented

by a table [140] or approximated by a linear [83] or nonlinear function [100].

Our meta-level control technique has been generalized to support many reinforce-

ment learning methods. It can use on-policy and off-policy temporal difference (TD)

learning methods like TD(λ) and SARSA(λ) [139, 33] as well as exploration strategies

like ε-greedy and softmax action selection [140]. While we do not commit to a specific

reinforcement learning method, we describe our meta-level control technique using ε-

greedy Q-learning [162] as an example because it has been analyzed extensively and

proven effective across many applications [137, 151, 96]. We discuss the update rules

and the exploration strategies of our meta-level control technique below.

3.6.1 Update Rules

A reinforcement learning agent can update its action-value function by following

an update rule that uses a reward signal emitted by the environment. In Algorithm 2,

when a new solution is computed in each monitoring step, our meta-level control

technique updates the action-value function using the update rule based on the reward

of anytime computation and the learning rate. However, when the anytime algorithm

is interrupted, our meta-level control technique does not update the action-value

function because there is no change in the solution.

3.6.1.1 ε-greedy Q-learning Example

Given an action-value function Q, a reward of anytime computation r = R(s, a, s′),

and a learning rate α, the update rule ρ(Q, r, α) is below:

Q(s, a)
+← α[r + max

a′∈A
Q(s′, a′)−Q(s, a)],

where the current state is s = (q, t) ∈ S, the current action is a ∈ A, and the successor

state is s′ = (q′, t′) ∈ S.

60

3.6.2 Exploration Strategies

A reinforcement learning agent can balance exploitation with exploration by fol-

lowing an exploration strategy. In Algorithm 2, when the action-value function is

updated in each monitoring step, our meta-level control technique technique updates

the policy using the action-value function and the exploration strategy.

3.6.2.1 ε-greedy Q-learning Example

The greedy policy must first be calculated. This policy can be built by performing

a one-step lookahead over every action available at the current state. Given an action-

value function Q, the greedy policy πQ(s) is calculated below:

πQ(s)← arg max
a∈A

Q(s, a),

where the current state is s = (q, t) ∈ S.

Finally, once the greedy policy has been calculated, it can be modified to follow

ε-greedy exploration by introducing randomness. Given an exploration probability ε

and a greedy policy πQ, the ε-greedy policy πQξ (s) is calculated below:

πQξ (s) =


πQ(s), with probability 1 - ε,

random(A), otherwise,

where the current state is s = (q, t) ∈ S.

3.7 Experiments

In this section, we evaluate our model-based and model-free approach to meta-level

control of anytime algorithms on several common benchmark domains and a mobile

robot domain. In each common benchmark domain, an autonomous system solves

the meta-level control problem for a given anytime algorithm on a specific problem: it

61

must decide when to interrupt an anytime algorithm and act on the current solution.

To do this, each trial runs two processes in parallel. The object-level process uses an

anytime algorithm to solve an instance of the problem. At the same time, the meta-

level process uses a meta-level control technique to monitor and control the anytime

algorithm at fixed intervals. The trial is over once the anytime algorithm is either

interrupted early or terminated naturally. All meta-level control techniques monitor

approximately every tenth of a second.

Any meta-level control problem requires a time-dependent utility function. Similar

to earlier work [60], given a solution of quality q ∈ Φ at time step t ∈ Ψ, the time-

dependent utility can be defined as the function U(q, t) = αq − eβt, where the rates

α and β are selected in practice based on the value of a solution (the intrinsic value

function) and the urgency for a solution (the cost of time). These rates are selected

deliberately to avoid trivializing the problem by making the urgency for a solution so

low that the anytime algorithm runs to completion or so high that it is interrupted

immediately. Note that the first term and the second term of the time-dependent

utility function represents the intrinsic value function and the cost of time.

3.7.1 Domains

We discuss each common benchmark domain and the mobile robot domain below.

Ideally, the quality of a solution can be defined as the approximation ratio, q = c∗/c,

where c∗ is the cost of the optimal solution and c is the cost of the current solution.

However, since computing the cost of the optimal solution for complex problems is

often infeasible, we estimate the quality of a solution as the approximation ratio,

q = `/c, where ` is a problem-dependent lower bound on the cost of the optimal

solution and c is the cost of the current solution like earlier work [60].

62

3.7.1.1 Lin-Kernighan Heuristic Domain

The first domain uses the Lin-Kernighan heuristic to solve travelling salesman

problems (TSP). A TSP has a set of cities that must be visited using the shortest

possible route where a distance is given for each pair of cities. The Lin-Kernighan

heuristic is a standard tour improvement algorithm that starts with an initial tour

and gradually improves that tour by swapping specific subtours until convergence [93].

Solution (tour) quality is approximated using the length of the minimum spanning

tree of the TSP as the lower bound `tsp

3.7.1.2 Genetic Algorithm Domain

The second domain uses a genetic algorithm to solve job-shop problems (JSP). A

JSP has a set of jobs composed of a sequence of tasks that must be scheduled on a set of

machines. The genetic algorithm is a standard open-source Python implementation,

jsp-ga, based on swap mutation and generalized order crossover used to solve JSPs

approximately [36, 102, 24, 39]. Solution (schedule) quality is approximated using

the time required to complete the longest job as the lower bound `jsp.

3.7.1.3 Simulated Annealing Domain

The third domain uses simulated annealing to solve quadratic assignment problems

(QAP). A QAP has a set of facilities that must be assigned to a set of locations

where a distance is given for each pair of locations and a flow is given for each pair

of facilities. The simulating annealing algorithm is a standard open-source Fortran

implementation, QAPLIB, used to solve QAPs approximately [164, 29, 99]. Solution

(assignment) quality is approximated using the Gilmore-Lawler bound, the optimal

cost of a linearized QAP [47], as the lower bound `qap.

63

3.7.1.4 Mobile Robot Domain

The fourth domain uses a path planning algorithm to solve path planning prob-

lems. Each path planning problem involves finding a path between a start location

and a goal location that maximizes a measure of safety based on the probability of

collision in a map with many obstacles and walls. The path planning algorithm is a

standard open-source robotics C++ implementation, epic [168], based on harmonic

function path planning in log-space that is designed for an iClebo Kobuki. Solution

(path plan) quality is approximated using a measure of safety based on the probability

of collision. Note that conducting experiments on an actual mobile robot ensures that

our approaches produce meaningful behavior that is suitable for use on real systems.

3.7.2 Model-Based Evaluation

We first evaluate our model-based metareasoning approach by comparing it to the

standard myopic and nonmyopic general-purpose offline planning meta-level control

techniques that can be used with any anytime algorithm [60]:

• a myopic monitor that interrupts an anytime algorithm once an estimate of the

EVC is no longer positive, and

• a nonmyopic monitor that interrupts an anytime algorithm once instructed to

by a monitoring policy.

Note that, as discussed earlier, both general-purpose offline planning meta-level con-

trol techniques rely on a performance profile that must be compiled offline prior to

the activation of meta-level control.

In contrast to existing meta-level control techniques that require substantial of-

fline work, our approach only requires a simple performance predictor. We use a

performance predictor based on nonlinear least squares regression with the model,

f(x; ~θ) = θ1g(x + θ2) + θ3, where the vector ~θ contains the parameters of the model

and the function g represents a nonlinear function, since it is a simple implementation

64

Type Prediction 50-Tsp 60-Tsp 70-Tsp 80-Tsp 90-Tsp

Nonmyopic
Online 93.67 89.64 91.23 91.09 94.41
Offline 92.98 86.53 89.75 90.51 92.26

Myopic
Online 80.47 70.29 63.07 59.61 59.91
Offline 60.98 43.66 37.88 39.29 42.53

Table 3.1: The average time-dependent utility for the best tour computed by the
Lin-Kernighan heuristic on five TSPs with our model-based metareasoning approach.

Type Prediction 20-Jsp 40-Jsp 60-Jsp

Nonmyopic
Online 119.19 102.62 101.23
Offline 115.64 95.57 94.05

Myopic
Online 114.08 97.49 96.34
Offline 101.20 91.28 92.83

Table 3.2: The average time-dependent utility for the best schedule computed by the
genetic algorithm on three JSPs with our model-based metareasoning approach.

Type Prediction 100-Qap 150-Qap 200-Qap

Nonmyopic
Online 165.55 167.29 164.78
Offline 162.78 163.91 162.84

Myopic
Online 162.20 161.53 160.77
Offline 159.55 159.82 159.32

Table 3.3: The average time-dependent utility for the best assignment computed by
simulated annealing on three QAPs with our model-based metareasoning approach.

of a performance predictor that we have observed to work well with many anytime

algorithms. Moreover, because anytime algorithms generally exhibit the diminishing

returns property [177], many logarithmic and sigmoidal functions work effectively.

Here, for the performance predictor, we use the sigmoidal function g(x) = arctan(x)

but have observed empirically that g(x) = log(x) is effective as well since many

anytime algorithms exhibits diminishing returns. Note that, unlike a performance

profile that must be built using a lengthy program, a performance predictor can be

implemented in a few lines of code using the open-source Python library SciPy.

65

Type Prediction Office Mine-S Mine-L

Nonmyopic
Online 88.43 87.90 86.74
Offline 79.12 56.02 70.83

Myopic
Online 85.60 86.72 84.62
Offline 44.12 52.91 65.76

Table 3.4: The average time-dependent utility for the best path computed by the path
planning algorithm on three maps with our model-based metareasoning approach.

On the common benchmark domains, all versions of our meta-level control tech-

nique are evaluated along their degree of optimality. Tables 3.1, 3.2, and 3.3 show the

average time-dependent utility of the final solution for each version of our meta-level

control techniques across 100 instances of all common benchmark problems. This

means that higher average time-dependent utility signifies better performance. The

results of the myopic and nonmyopic versions of the meta-level control techniques

have been separated to ensure a fair comparison.

In the mobile robot domain, all versions of our meta-level control technique

are evaluated along their degree of optimality. Table 3.4 shows the average time-

dependent utility of the final solution for each of our meta-level control techniques

across 100 instances of three path planning problems. Each problem uses a different

map. The first map, Office, is a domain of an office in which the goal is impeded

by many boxes, furniture, and walls. The other maps, Mine-S and Mine-L, are

standard domains of coal mines generated with a mapping procedure [155]. Every

instance of a problem has a random start position but the same goal position.

Figure 3.4 depicts the results of the experiments on an actual mobile robot. In

this case, we run our nonmyopic meta-level control technique on the Office map.

We only consider our nonmyopic meta-level control technique given its dominant

performance in the mobile robot simulation. The four scenarios are associated with

an infinite, high, low, and nil cost of time but the same start and goal position.

66

Figure 3.4: The Office map (left) with the riskiest path (red), a very risky path
(yellow), a very safe path (blue), and the safest path (green) in addition to the
environment of the mobile robot (right).

3.7.2.1 Discussion

On all common benchmark domains, not only does our meta-level control tech-

nique avoid offline work, but it also outperforms the state-of-the-art meta-level con-

trol techniques. Given similar results across every domain in Tables 3.1, 3.2, and 3.3,

we focus our analysis on the Lin-Kernighan heuristic domain in Table 3.1. In the

nonmyopic case, our meta-level control technique incurs a loss under 2% on every

problem. As the size of the problem increases, the loss of our nonmyopic meta-

level control technique remains steady while the existing meta-level control technique

varies. In the myopic case, the difference between our meta-level control technique

and the meta-level control existing technique is even larger. As the size of the prob-

lem increases, the myopic meta-level control technique degrades more slowly than the

existing meta-level control technique as well. While all meta-level control techniques

may be improved with a richer model using problem-specific instance features [75],

it is very encouraging that we observe near optimal results given only computation

time and solution quality as the state of computation.

Figure 3.5 illustrates the preprocessing time required to compile a performance

profile and a monitoring policy for the state-of-the-art meta-level control techniques

on the Lin-Kernighan heuristic domain. This shows that preprocessing time grows

rapidly with the size of the problem. In fact, even for modest problems, compiling

67

Figure 3.5: The preprocessing time of prevailing planning approaches.

Figure 3.6: The change in the prediction error of our approach.

a performance profile and a monitoring policy can take hours of offline work. Fur-

thermore, Figure 3.6 illustrates the improvement in the prediction error over time for

our nonmyopic technique on the Lin-Kernighan heuristic domain. This shows that

prediction error falls quickly with the size of the performance history. In particular,

for all problems, the prediction error starts at less than 21% and ends at less than 7%.

Note that the prediction error is expressed as the maximum difference between the

current performance projection and the true performance of the anytime algorithm.

On the mobile robot domain, our meta-level control technique substantially out-

performs the state-of-the-art meta-level control techniques. In simulation in Table 3.4,

since the performance of the path planning algorithm is concave [168], our myopic

meta-level control technique performs nearly as well as our nonmyopic meta-level

control technique. In fact, our myopic meta-level control technique even outperforms

the existing nonmyopic meta-level control technique due to large variation across in-

stances of the problem, which is not captured by a performance profile. Crucially, on

a mobile robot in Figure 3.4, our nonmyopic meta-level control technique effectively

trades computation time with path safety. Given a high cost of time, the robot dan-

68

gerously traverses through the boxes to the goal. However, given a low cost of time,

the robot safely avoids the boxes entirely.

It may seem counterintuitive that our meta-level control technique outperforms

state-of-the-art meta-level control techniques shown to be optimal [60]. The key idea

is that existing meta-level control techniques assume that a performance profile is

an exact model of the behavior of an anytime algorithm. There are a number of

reasons, however, why such a model may not be adequate. First, existing meta-level

control techniques assume that the model is accurate across different instances of

a problem while our meta-level control technique adapts to each instance by using

online performance prediction. Next, when existing meta-level control techniques are

deployed, they do not perform as well because the model was compiled using some

predicted distribution instead of the true but unknown distribution. Moreover, the

model loses information about the performance of the algorithm as solution quality

and computation time must be discretized into a small number of bins. Finally,

since the model is compiled under specific CPU and memory conditions, existing

meta-level control techniques become less accurate given variance in these conditions.

Even without any offline work, our meta-level control technique avoids these pitfalls.

3.7.3 Model-Free Evaluation

We now evaluate our model-free metareasoning approach by comparing it to the

prevailing nonmyopic general-purpose planning technique that can be used with any

anytime algorithm [60]:

• a nonmyopic monitor that interrupts an anytime algorithm once instructed to

by a monitoring policy.

Each version of our meta-level control technique uses a different reinforcement learning

method with some function representation following ε-greedy action selection. In

particular, we evaluate the following versions of our meta-level control technique:

69

• tabular SARSA,

• tabular Q-learning,

• Fourier basis SARSA, and

• Fourier basis Q-Learning.

Note that we experiment with tabular functions and linear approximations with

Fourier basis for our meta-level control techniques because they are often the first

to be tried by researchers and practitioners in reinforcement learning [83].

All of our meta-level control techniques begin with a randomized initial policy that

is equally likely to stop or continue the anytime algorithm. This policy is updated

as the meta-level control technique learns from 5000 random problem instances. The

exploration probability ε is set to 0.1 with a decay of 0.999 while the learning rate α

is set to 0.1 for our tabular meta-level control techniques and 0.00001 for our Fourier

basis meta-level control techniques. It is also possible to design an initial policy that

exploits the form of the time-dependent utility function in safety-critical domains.

The planning meta-level control technique, however, uses a static policy that cannot

be updated over time. This policy is calculated by applying dynamic programming

to a performance profile compiled from 2000 random problem instances solved to

completion prior to the activation of meta-level control.

On the common benchmark domains, all versions of our meta-level control tech-

nique are evaluated along three important dimensions: the degree of optimality, the

rate of convergence, and the rate of adaptation. First, for the degree of optimality,

Tables 3.5, 3.6, and 3.7 show the average time-dependent utility loss of the final so-

lution for each version of our meta-level control techniques across 100 instances of all

benchmark problems. This means that lower average time-dependent utility losses

signify better performance. Next, for the rate of convergence, Figure 3.7 shows the

change in the time-dependent utility of the policy for each of our meta-level con-

70

Method 50-Tsp 60-Tsp 70-Tsp 80-Tsp 90-Tsp

Planning 11.40 15.27 8.95 10.68 11.96

SARSA(Table) 13.94 16.73 13.61 24.49 21.46
Q-learning(Table) 15.66 18.61 20.93 23.34 26.44

SARSA(Fourier) 2.27 6.77 3.75 3.81 5.68
Q-learning(Fourier) 2.69 6.33 2.51 5.64 5.25

Table 3.5: The average time-dependent utility loss for the best tour computed by the
Lin-Kernighan heuristic on five TSPs with our model-free metareasoning approach.

Method 20-Jsp 40-Jsp 60-Jsp

Planning 2.85 5.54 2.52

SARSA(Table) 18.26 17.23 15.33
Q-learning(Table) 18.17 16.96 14.43

SARSA(Fourier) 2.11 2.37 1.38
Q-learning(Fourier) 2.77 1.88 2.22

Table 3.6: The average time-dependent utility loss for the best schedule computed by
the genetic algorithm on two JSPs with our model-free metareasoning approach.

Method 100-Qap 150-Qap 200-Qap

Planning 4.33 6.52 7.13

SARSA(Table) 4.13 3.97 4.39
Q-learning(Table) 3.36 3.95 3.52

SARSA(Fourier) 0.69 0.51 1.12
Q-learning(Fourier) 0.36 0.53 1.17

Table 3.7: The average time-dependent utility loss for the best assignment computed
by simulated annealing on two QAPs with our model-free metareasoning approach.

trol techniques on select benchmark problems. Finally, for the rate of adaptation,

Figure 3.8 shows the number of episodes required by each of our meta-level control

techniques to adapt to a change in the parameters of select benchmark problems.

In the mobile robot domain, all versions of our meta-level control technique

are evaluated along their degree of optimality. Table 3.8 shows the average time-

dependent utility loss of the final solution for each of our meta-level control techniques

71

Figure 3.7: The learning curves for each of our meta-level control techniques on the
60-Tsp, 40-Jsp, and 150-Qap benchmark problems.

Figure 3.8: The adaptation period for each of our Fourier basis meta-level control
techniques on all TSP benchmark problems.

across 100 instances of the three path planning problems. Recall that the first map,

Office, is a domain of an office in which the goal is impeded by many boxes, fur-

niture, and walls while the other maps, Mine-S and Mine-L, are standard domains

of coal mines generated with a mapping procedure [155]. Again, every instance of a

problem has a random start position but the same goal position.

Figure 3.9 shows a simulation of the mobile robot domain. An autonomous system

can use a model-free approach to meta-level control based on reinforcement learning

to learn when to interrupt a path planning algorithm and act on the current path plan.

As the number of episodes increases, the utility of the current path plan approaches

the utility of the final path plan that optimizes the trade-off between solution quality

and computation time. It is important to highlight that the path plan at convergence

requires minutes while the final path plan only involves seconds of deliberation.

72

Method Office Mine-S Mine-L

Planning 12.02 10.64 11.02

SARSA(Table) 5.52 6.72 5.66
Q-learning(Table) 3.59 6.01 4.08

SARSA(Fourier) 2.95 3.37 2.34
Q-learning(Fourier) 2.75 3.15 3.13

Table 3.8: The average time-dependent utility loss for the best path computed by the
path planning algorithm on three maps with our model-free metareasoning approach.

3.7.3.1 Discussion

Our model-free approach to meta-level control based on reinforcement learning

outperforms the planning meta-level control technique across every domain. Given

near optimal performance in Tables 3.5, 3.6, 3.7, and 3.8 and fast convergence in

Figure 3.7, we focus on our meta-level control techniques that use a linear approxi-

mation with Fourier basis. Our meta-level control techniques incur a loss lower than

3% on most problems with an upper limit of 7% while the planning meta-level con-

trol technique incurs a loss higher than 10% on most problems with an upper limit

of 16%. Our meta-level control techniques also have less variance compared to the

planning meta-level control technique. Overall, although our approach can be im-

proved in several ways, it is encouraging that it exhibits near optimal performance

and fast convergence using standard reinforcement learning methods, simple function

approximations, and naive exploration strategies.

Our approach also adapts to meta-level control problems with parameters that

change over time. In Figure 3.8, our meta-level control techniques update their poli-

cies in under 1000 random instances to adapt to a change in the size of each TSP

benchmark problem. The planning meta-level control technique, however, requires

substantial offline work because it has to compile a completely new policy by applying

dynamic programming to a performance profile prior to meta-level control.

73

start

goal

Episodes

Time-Dependent	Utility Optimal	Utility

Current	Utility
1000 1500 2000

Episode	1000
Episode	1500
Episode	2000
Convergence

Paths

Figure 3.9: A simulation of the mobile robot domain.

Using reinforcement learning for model-free meta-level control offers a number of

advantages over the traditional planning paradigm. First, when the parameters of

meta-level control change over time, our approach can update its policy incrementally

on the fly. This is critical since the settings of the anytime algorithm, the distribution

of problem instances, and the CPU and memory conditions of the system often shift in

practice. Moreover, when there is not enough time before the activation of meta-level

control, our approach can compile its policy online from scratch. Most importantly,

even if the parameters of meta-level control do not change over time and there is

enough time before the activation of meta-level control, our approach still outperforms

the planning paradigm by learning a significantly more effective policy in substantially

less time. This is because reinforcement learning focuses on meaningful regions of the

state space of the meta-level control problem in contrast to planning.

3.8 Summary

This chapter introduces two metareasoning approaches to stopping of anytime

algorithms: a model-based approach that uses online performance prediction and a

74

model-free approach that uses reinforcement learning. By learning the performance

of the anytime algorithm using either a model-based or model-free approach, it is

possible to avoid relying on significant preprocessing that can decrease the accu-

racy and usefulness of existing metareasoning methods for anytime algorithms in the

real world. In our experiments, we show that both approaches outperform existing

meta-level control techniques that require substantial offline work on several common

benchmark domains and a mobile robot domain.

75

CHAPTER 4

METAREASONING FOR HYPERPARAMETER TUNING

4.1 Introduction

Building on our work in the previous chapter, we develop a metareasoning ap-

proach that enables autonomous systems to not only determine the optimal stopping

point but also tune the hyperparameters of anytime algorithms at runtime. Natu-

rally, anytime algorithms often have hyperparameters that can be tuned at runtime

to boost their overall performance in a specific scenario—given a certain problem

instance and a time constraint. As we described in detail earlier, the central prop-

erty of an anytime algorithm is that it can be interrupted at any time to provide a

solution that is gradually improved upon at runtime [177], which offers an important

trade-off between the quality and computation time of a solution that has proven to

be useful in a variety of real-time decision-making problems. Currently, to manage

this trade-off, existing work on metareasoning has focused on determining when to

interrupt an anytime algorithm and act on the current solution. However, the scope

of metareasoning can ideally be expanded to tune the hyperparameters of an anytime

algorithm at runtime in order to boost its overall performance in a specific scenario.

There has been a substantial body of work on developing metareasoning techniques

that determine when to interrupt an anytime algorithm and act on the current solu-

tion as we discussed earlier. Generally, these methods monitor and control an anytime

algorithm by tracking its performance and estimating its stopping point at runtime.

For example, an early approach models optimal stopping as a sequential decision

problem and derives a meta-level control policy using dynamic programming tech-

76

niques [60]. Moreover, in the previous chapter, we offered a model-based approach

and a model-free approach that estimate the optimal stopping point of an anytime

algorithm using online performance prediction and reinforcement learning. All of

these methods, however, cannot tune the hyperparameters of the anytime algorithm

at runtime to improve its overall performance in a specific scenario.

Nevertheless, formal techniques for tuning the hyperparameters of an anytime

algorithm at runtime have largely been designed for specific anytime algorithms. For

instance, there have been methods for heuristically tuning the weight of an anytime

heuristic search algorithm called anytime weighted A* [58, 138, 153, 22] and methods

for heuristically tuning the growth factor and area of focus of an anytime motion

planning algorithm called RRT* [156, 4, 80]. However, these methods have several

drawbacks as they lack formal analysis or generality and require expertise in the

implementation of the anytime algorithm. Most importantly, they do not fully utilize

that an anytime algorithm continually computes solutions of a well-defined utility as

it runs.

We therefore introduce a general, decision-theoretic metareasoning approach to

both optimal stopping and optimal hyperparameter tuning for a generalization of an

anytime algorithm that we call an adjustable algorithm. Our approach models the

problem of monitoring and controlling an adjustable algorithm as a deep reinforce-

ment learning problem, specifically an MDP, with two main attributes. Its states

represent the quality and computation time of the current solution and any other

features needed to summarize the internal state of the algorithm, the instance of the

problem, or the performance of the system. Its actions represent either interrupting

the algorithm or executing the algorithm for another time step while tuning its in-

ternal hyperparameters. Given this MDP, our meta-level control technique uses deep

reinforcement learning to learn a policy for both optimal stopping and optimal hy-

perparameter tuning of the adjustable algorithm: it performs a series of episodes that

77

each use the adjustable algorithm to solve a generated instance of a specific problem.

Our experiments on distinct search paradigms, particularly anytime weighted A* for

heuristic search and RRT* for motion planning, highlight that deep reinforcement

learning is an effective approach to metareasoning for adjustable algorithms given

the abundance of simulations that are generated readily.

4.1.1 Contributions

In this chapter, we make the following contributions: (1) a generalization of an

anytime algorithm called an adjustable algorithm that can be interrupted at any time

for its current solution and has hyperparameters that can be tuned at runtime, (2) a

meta-level control technique that learns optimal stopping and optimal hyperparam-

eter tuning of an adjustable algorithm by using deep reinforcement learning, (3) an

example of our approach on anytime weighted A*, and (4) a set of experiments that

show that our approach boosts overall performance on a common benchmark domain

that uses anytime weighted A* to solve a range of heuristic search problems and a

mobile robot application that uses RRT* to solve motion planning problems.

4.2 Related Work

There are two broad approaches to automatic hyperparameter tuning for general

algorithms. Model-based approaches typically interleave fitting a model with selecting

hyperparameters based on that model. Notably, building on earlier work in sequential

model-based optimization [14, 72, 71], the SMAC method uses a model represented

as a random forest to select the hyperparameters of an algorithm [70]. However,

while model-free approaches do not use any model, they have still been shown to be

effective across a range of applications. Limited to numerical hyperparameters, the

CALIBRA method uses experimental designs to find initial hyperparameters followed

by local search to improve those hyperparameters [1] while the F-Race method lever-

78

ages racing algorithms from machine learning [25, 26] to select the hyperparameters of

an algorithm. Extending to categorical hyperparameters, the GGA method employs

parallel gender-based genetic algorithms [10] while the ParamILS method performs

iterated local search [74, 73] to select the hyperparameters of an algorithm.

We highlight that these methods are largely designed for general algorithms and

typically do not exploit anytime algorithms. By applying deep reinforcement learning

to anytime algorithms in particular, our approach avoids many drawbacks often im-

posed by current methods. First, unlike methods that only support numerical hyper-

parameters and deterministic algorithms, our approach also supports both categorical

hyperparameters and stochastic algorithms. Next, unlike methods that only optimize

the hyperparameters of an algorithm on a single problem instance, our approach op-

timizes the hyperparameters of an algorithm on multiple problem instances. In fact,

our approach adjusts the hyperparameters of an algorithm on a specific instance of a

problem at runtime. Finally, unlike methods that always execute an algorithm until

completion, our approach terminates an algorithm early if necessary.

An orthogonal line of work that focuses on using a portfolio of algorithms to solve

different instances of hard computational problems has seen recent attention as well.

This research recognizes that different algorithms tend to dominate each other on

different instances of a problem because there is often no single best algorithm [89].

This has resulted in methods that can use portfolios of algorithms for satisfiability [50],

ensemble methods in machine learning [40, 42], and multiple methods in real-time

problem solving [160, 180]. Notably, SATzilla [172], an efficient solver that manages

a portfolio of algorithms to solve difficult satisfaction problems, has won multiple

competitions and has continued to dominate the field.

In the previous chapter, we discussed the body of work for optimal stopping of

anytime algorithms that has grown over the last thirty years. In particular, early

approaches based on fixed allocation execute the anytime algorithm until a stopping

79

point determined prior to runtime [66, 27] in comparison to recent approaches based

on monitoring and control that track the performance of the anytime algorithm and

estimates a stopping point at runtime periodically [67, 182, 60, 92, 149, 146]. Our

approach not only estimates the stopping point but also tunes the hyperparameters

of an anytime algorithm at runtime to boost its overall performance.

Most recently, in the field of heuristic search, a couple techniques have been pro-

posed for dynamically selecting the heuristic function by using deep reinforcement

learning [136] and dynamically adjusting the search strategy in classical planning

by using evolutionary strategies [51]. Moreover, in the field of motion planning, a

technique has been proposed for learning the parameters of a planner from demon-

stration [171]. However, our approach focuses more broadly on anytime algorithms

instead of just heuristic search as we will see in our experiments.

4.3 Adjustable Algorithms

We begin by proposing a generalization of an anytime algorithm called an ad-

justable algorithm. An adjustable algorithm has both internal state and internal

hyperparameters. Simply put, a metareasoner can monitor the internal state of the

algorithm and control the internal hyperparameters to either interrupt the algorithm

or execute the algorithm for another time step while adjusting its internal operation.

This results in a new meta-level control problem that involves both stopping and

hyperparameter tuning of an adjustable algorithm. At a high level, we will see that

our approach monitors and controls an adjustable algorithm by expressing this new

meta-level control problem as a deep reinforcement learning problem. We define an

adjustable algorithm is defined as follows.

Definition 12. An adjustable algorithm, Λ, has internal state that can be moni-

tored and internal hyperparameters {Θ0,Θ1, . . . ,Θ`Θ} that can be controlled such that

the internal hyperparameter Θ0 = {Stop,Continue} either interrupts the algorithm

80

Figure 4.1: An example of two executions of anytime weighted A*.

or executes the algorithm for another time step and the internal hyperparameters

{Θ1, . . . ,Θ`Θ} adjust the internal operation of the algorithm.

We use anytime weighted A* to illustrate our approach throughout the chapter.

Anytime weighted A*, an anytime algorithm that extends the popular A* heuristic

search algorithm [61, 91, 3, 58, 154], is an example of an adjustable algorithm. This

algorithm (1) uses an inadmissible heuristic to quickly find suboptimal solutions,

(2) continues the search after each suboptimal solution is found, (3) provides an

error bound on each suboptimal solution when it is interrupted, and (4) guarantees

an optimal solution once the open list is empty. Notably, the standard evaluation

function f(n) = g(n) + h(n) that is used to select the next node for expansion from

the open list is replaced with a weighted evaluation function fw(n) = g(n) +w · h(n),

where the path cost function g(n) is the cost of the path from the start node to a

node n and the heuristic function h(n) is the estimated cost from a node n to the

goal node given a weight w ≥ 1. Intuitively, by weighting the heuristic function h(n)

more heavily than the path cost function g(n) for any weight w > 1, the algorithm

prioritizes expanding nodes that appear closer to reaching any solution instead of

nodes that lead to the optimal solution. This causes the algorithm to speed up

computation time at the expense of solution quality.

81

Figure 4.1 shows typical performance curves of two runs of anytime weighted A*

with different weights that each solve a given instance of a problem. With deadlines,

a weight of 2.0 leads to better quality at Contract 1 while a weight of 1.5 results

in better quality at Contract 2. Without deadlines, a weight of 2.0 leads to better

quality in the short term but worse quality in the long term while a weight of 1.5

results in worse quality in the short term but better quality in the long term. This

poses an important question: is it possible to develop a metareasoning approach that

tunes the hyperparameters of an adjustable algorithm at runtime to boost its overall

performance with or without deadlines? In this chapter, we answer this question by

offering a simple metareasoning framework for learning optimal stopping and optimal

hyperparameter tuning of adjustable algorithms with deep reinforcement learning.

Our approach to monitoring and controlling adjustable algorithms based on deep

reinforcement learning expresses the meta-level control problem as an MDP. This

meta-level control problem, which can be viewed as an extension of the meta-level

control problem for monitoring and controlling anytime algorithms defined in the

previous chapter, is an MDP that has two central attributes. First, the the set of

states has state factors that reflect the quality and computation time of the current

solution along with state factors that reflect the internal state of the algorithm, the

instance of the problem, or the performance of the system. Second, the set of actions

has an action factor that reflects the internal hyperparameter that either interrupts

the algorithm or executes the algorithm for another time step along with action

factors that reflect the internal hyperparameters that adjust the internal operation of

the algorithm. We now provide a formal description of the meta-level control problem

by representing it as an MDP below.

Definition 13. The meta-level control problem for monitoring and control-

ling an adjustable algorithm, Λ, is represented by an MDP 〈Φ,Ψ, F, S, A, T,R, s0〉

given a time-dependent utility function U : Φ×Ψ→ R:

82

• Φ = {q0, q1, . . . , qNΦ
} is a set of qualities for the current solution of the ad-

justable algorithm.

• Ψ = {t0, t1, . . . , tNΨ
} is a set of time steps for the current solution of the ad-

justable algorithm.

• F = F0 × F1 × · · · × FNF
is a set of features that summarize the internal state

of the algorithm, the instance of the problem, or the performance of the system.

• S = Φ × Ψ × F is a set of states of adjustable computation: each state s ∈ S

indicates that the adjustable algorithm has a solution of quality q ∈ Φ at time

step t ∈ Ψ with a feature f ∈ F .

• A = Θ0×Θ1×· · ·×ΘNΘ
is a set of actions of adjustable computation: the inter-

nal hyperparameter Θ0 = {Stop,Continue} either interrupts the adjustable

algorithm or executes the adjustable algorithm for another time step of duration

∆ while the internal hyperparameters Θ1, . . . ,ΘNΘ
adjust the internal operation

of the adjustable algorithm.

• T : S×A×S → [0, 1] is a transition function of adjustable computation that is

unknown and possibly nonstationary that represents the probability of reaching

a state s′ = (q′, t′, f ′) ∈ S after performing an action a ∈ A in a state s =

(q, t, f) ∈ S.

• R : S×A×S → R is a reward function of adjustable computation that represents

the expected immediate reward, R(s, a, s′) = U(q′, t′)−U(q, t), of reaching a state

s′ = (q′, t′, f ′) ∈ S after performing an action a ∈ A in a state s = (q, t, f) ∈ S.

• s0 ∈ S is an optional start state that is typically s0 = (q0, t0, f0) ∈ S that

indicates that the adjustable algorithm has a solution of quality q0 ∈ Φ at time

step t0 ∈ Ψ with a feature f0 ∈ F .

83

Observe that, following the previous chapter, the discount factor γ of the MDP is

set to 1 because the meta-level control problem has an indefinite horizon since an ad-

justable algorithm must terminate eventually [57]. Moreover, it is easy to verify that

the reward of adjustable computation is consistent with the objective of optimizing

time-dependent utility: running the adjustable algorithm until a solution of quality

q ∈ Φ at time step t ∈ Ψ with a feature f ∈ F results in a cumulative reward of

adjustable computation equal to the time-dependent utility U(q, t).

Similar to the previous chapter, the meta-level control problem here recognizes

that the state of computation as only the quality and computation time of the current

solution [182] will likely not be Markovian. Consequently, it is clear that the state

of computation could be augmented with features that summarize the internal state

of algorithm, the instance of the problem, or the performance of the system. As

an example, in a domain that uses anytime weighted A* to solve an instance of a

TSP, there could be features for the mean of the g- and h-values on the open list

of anytime weighted A*, the number of cities in the instance of the TSP [75], or

the processor usage of the system. Our approach to adjustable algorithms can use a

complex representation with a range of features for the state of computation to better

approximate the Markov property by using deep reinforcement learning.

4.4 Metareasoning with Deep Reinforcement Learning

We now offer a meta-level control technique that uses deep reinforcement learning

to monitor and control adjustable algorithms. Here, our meta-level control technique

uses deep reinforcement learning to learn both optimal stopping and optimal hyper-

parameter tuning of an adjustable algorithm: it performs a series of episodes that

each use the adjustable algorithm to solve a generated instance of a specific problem.

Deep reinforcement learning has been effective across a variety of applications,

including Atari [100], chess [131], and StarCraft [159]. A deep reinforcement learn-

84

insert()Experience Buffer

Target A
ction-Value N

etw
ork

C
ur

re
nt

 A
ct

io
n-

Va
lu

e
N

et
w

or
k

Backpropagation

Figure 4.2: A diagram of our meta-level control technique.

ing agent can learn a policy expressed as a neural network by performing actions

and observing rewards in its environment. This makes it a natural approach to the

meta-level control problem for monitoring and controlling adjustable algorithms for

three reasons [140]. First, by balancing exploitation with exploration, it can learn a

policy that tunes the internal hyperparameters of the algorithm without knowing the

transition function. Next, by ignoring large regions of the state space that are not

reached in practice, it can reduce the overhead of learning a policy that tunes the

internal hyperparameters of the algorithm. Finally, by using a neural network that

can learn complex relationships between large input and output spaces, it can learn

the effect of the internal hyperparameters on the internal state of the algorithm.

Algorithm 3 shows our metareasoning technique for monitoring and controlling

adjustable algorithms using deep Q-learning [100]. Each episode (Line 4) starts by

executing the adjustable algorithm for a time step on a generated instance of a specific

85

problem (Lines 5-11). For each time step as the adjustable algorithm is executing

(Line 12), there are several steps. First, the experience buffer is updated with the

current state of computation, the current action of computation, the current reward,

and the next state of computation (Lines 13-15) as shown in Figure 4.2. Next, if

the size of the experience buffer exceeds the initialization period, we sample a mini-

batch (Lines 16-17). With that minibatch, the temporal-difference error is used to

update the action-value network via backpropagation and then the target action-value

network is updated via a moving average (Lines 17-21). Thereafter, the adjustable

algorithm is either interrupted or executed for another time step while adjusting its

internal hyperparameters by following the policy computed from the action-value net-

work and the exploration strategy (Lines 22-28). Finally, the action-value function is

returned (Line 29). We now walk through each line of Algorithm 3 below.

Reinforcement Learning Episode Loop The experience buffer is initialized to a

capacity (Line 1). The current action-value function is initialized to an action-value

network (Line 2). The target action-value function is initialized to the current action-

value function (Line 3). An episode loop iterates from 1 to the number of episodes

(Line 4). For each episode, the following phases are performed for setup (Lines 5-

11), monitor (Lines 12-15), update (Lines 16-21), and control (Lines 22-28). The

action-value function is returned (Line 29).

Episode Setup Phase An instance is sampled from the problem distribution and

the adjustable algorithm is set up to solve that problem instance (Lines 5-6). The

current time is initialized to zero, the current state is initialized to the quality and

computation time of the initial solution along with any extra features, and the current

action is initialized to the policy calculated from the current action-value function and

the exploration strategy at the current state (Lines 7-9). The adjustable algorithm

starts to solve the problem instance with the hyperparameters following the current

action (Lines 10-11).

86

Algorithm 3: Our meta-level control technique that uses deep reinforcement
learning, specifically deep Q-learning, to learn both optimal stopping and
optimal hyperparameter tuning of an adjustable algorithm.
Input: An adjustable algorithm Λ, an action-value network N , a step size α1, a

target action-value network step size α2, an exploration strategy E , an
experience buffer capacity `1, a number of episodes `2, an initialization
period `3, a minibatch size `4, and a duration ∆

Output: An action-value function Q

1 B ← ExperienceBuffer(`1)
2 Q← NeuralNetwork(N)

3 Q̂← Q

4 for i = 1, 2, . . . , `2 do
5 P ← SampleProblemDistribution()
6 Λ.Setup(P)

7 t← 0
8 st ← (Λ.GetΦ(),Λ.GetΨ(),Λ.GetF ())

9 at ← πQE (st)

10 Λ.Start(at.Θ1, . . . , at.Θ`Θ)
11 Sleep(∆)

12 while Λ.Running() do
13 st+1 ← (Λ.GetΦ(),Λ.GetΨ(),Λ.GetF ())
14 rt ← R(st, at, st+1)

15 B.Append((st, at, rt, st+1))

16 if B.Size() ≥ `3 then
17 M ← B.SampleMinibatch(`4)

18 L̂(r, s′) := r + γmaxa′∈A Q̂(s′, a′)

19 L(s, a, r, s′) := [L̂(r, s′)−Q(s, a)]2

20 Q.Backpropagate(M,L, α1)

21 Q̂← (1− α2) · Q̂+ α2 ·Q

22 t← t+ 1

23 at ← πQE (st)

24 if at.Θ0 = Stop then
25 Λ.Stop()
26 break

27 Λ.Continue(at.Θ1, . . . , at.Θ`Θ)
28 Sleep(∆)

29 return Q

87

Episode Monitor Phase A loop runs until the adjustable algorithm is interrupted

early or terminated naturally (Line 12). The successor state is set to the quality and

computation time of the new solution and any extra features while the current reward

is calculated from the current state, the current action, and the successor state (Lines

13-14). The experience buffer is appended with the current state, the current action,

the current reward, and the successor state (Line 15).

Episode Update Phase The phase occurs if the size of the experience buffer is

greater than the initialization period (Line 16). A minibatch is sampled from the

experience buffer (Line 17). The loss function is defined as the square of the temporal-

difference error (Lines 18-19). The current action-value function as a neural network

is updated via backpropagation from the minibatch, the loss function, and the step

size and the target action-value function is updated using the current action-value

function (Lines 20-21).

Episode Control Phase The current time is incremented and the new current

action is set to the policy calculated from the current action-value function and an

exploration strategy at the new current state (Lines 22-23). If the action indicates

to stop the adjustable algorithm, the adjustable algorithm is interrupted and the

loop iterates to the next episode (Lines 24-26). Otherwise, the adjustable algorithm

continues execution after tuning its internal hyperparameters (Lines 27-28).

4.5 Anytime Weighted A* Example

We turn to an application of our approach to anytime weighted A*. Recall that

anytime weighted A* is an anytime heuristic search algorithm that uses an inad-

missible heuristic function to find suboptimal solutions, continues searching after

each suboptimal solution is found, exhibits an error bound on a suboptimal solu-

tion when it is interrupted, and guarantees an optimal solution once the open list

88

is empty. Importantly, anytime weighted A* uses a weighted evaluation function

fw(n) = g(n)+w ·h(n) instead of the standard evaluation function f(n) = g(n)+h(n)

with a path cost function g(n) and a heuristic function h(n) for a given node n.

Meta-level control therefore involves not only optimal stopping and but also optimal

hyperparameter tuning of the weight of anytime weighted A*.

Recent work on anytime weighted A* has focused on selecting the best static

weight for a specific problem [58], choosing the best static weight for a specific in-

stance of a problem [138], and adjusting the weight at runtime heuristically [153].

However, there is also work that shows that anytime weighted A* can be improved

through random restarting when a solution is found [116] and even work that analyzes

the failure conditions of anytime weighted A* with respect to its weight for specific

problems [166]. Overall, recent work has shown that the problem of adjusting the

weight of anytime weighted A* at runtime is challenging.

Intuitively, the meta-level control problem for monitoring and controlling anytime

weighted A* is an MDP with two important attributes. The set of states reflects the

quality and computation time of the current solution and extra features that summa-

rize the nodes in the open list, the instance of the problem, and the performance of

the system. The set of actions reflects an internal hyperparameter that either inter-

rupts the algorithm or executes anytime weighted A* for another time step and an

internal hyperparameter that adjusts the weight of anytime weighted A*. This MDP

is used by our meta-level control technique learn how to monitor and control anytime

weighted A* effectively using deep reinforcement learning.

More formally, the meta-level control problem for monitoring and controlling any-

time weighted A*, Λ, is represented by an MDP 〈Φ,Ψ, F, S, A, T,R, s0〉 given a time-

dependent utility function U : Φ×Ψ→ R. Φ = [0, 1] is the set of qualities. Ψ = [0, τ]

is the set of time steps with a deadline τ . F is the set of features such that the feature

w ∈ W is the current weight, the features µg ∈ R and µh ∈ R are the mean of the

89

Internal State

Problem System

Internal Parameters Anytime Weighted A*

Object-Level Process

Meta-Level Process

State Action

controlmonitor

Figure 4.3: An example of a metareasoning architecture for anytime weighted A*
that has a meta-level process and an object-level process.

g- and h-values on the open list, the features σg ∈ R and σh ∈ R are the standard

deviation of the g- and h-values on the open list, the features g ∈ R and h ∈ R are

the minimum g- and h-values on the open list, the feature ζ ∈ R is the value log(n)

for the number of nodes n on the open list, the feature q̄ ∈ R is the h-value of the

initial state divided by the minimum f -value on the open list, the feature h0 is the

h-value of the initial state, the feature ρg,h ∈ [−1, 1] is the correlation between the g-

and h-values on the open list, the feature κ ∈ K is a set of settings for the instance of

the problem, and the feature χ ∈ [0, 1] is the processor usage of the system. A is the

set of actions of computation: the internal hyperparameter Θ0 ∈ {Stop,Continue}

interrupts the algorithm or executes the algorithm for another time step while the

internal hyperparameter Θ1 = {←,→} adjusts the weight w ∈ W by shifting its

pointer to the set of weights W = {1, 1.5, 2, 3, 4, 5} either left or right. Note that S,

A, T , R, and s0 follow from the meta-level control problem for adjustable algorithms.

90

insert()insert() insert()

delete()

*

Figure 4.4: A modified implementation of anytime weighted A* that manages multiple
open lists each associated with a specific weight.

The metareasoning architecture as shown in Figure 4.3 has a meta-level process

that monitors and controls an object-level process that executes anytime weighted A*.

Anytime weighted A* involves a simple modification to allow its weight to be

adjusted at runtime. Instead of inserting/deleting a node into/from a single open list

for a static weight, the algorithm inserts/deletes this node into/from |W | open lists

each ordered by the fw-value of a weight w ∈ W as illustrated in Figure 4.4 such that

each open list has a different ordering of the same exact nodes. The worst-case time

complexity for inserting/deleting a node across all open lists of size n sequentially is

O(|W | log n), which are two operations that can be parallelized for each open list.

4.6 Experiments

In this section, we evaluate our approach on a common benchmark domain that

uses anytime weighted A* to solve a range of heuristic search problems and a mobile

robot application that uses RRT* to solve motion planning problems.

In our experiments, our approach and each standard approach solve 1000 ran-

domized instances of a problem using the adjustable algorithm from both domains.

For each randomized instance, we record the final solution quality produced by the

adjustable algorithm for all approaches. Ideally, for any instance of a problem, re-

call that we define solution quality as the approximation ratio, q = c∗/c, where c∗

91

is the cost of the optimal solution and c is the cost of the current solution. How-

ever, since computing the cost of the optimal solution for complex problems is often

infeasible, we estimate solution quality as the approximation ratio, q = ĉ∗/c, where

ĉ∗ is a problem-dependent lower bound on the cost of the optimal solution and c is

the cost of the current solution following existing work on anytime algorithms [60].

Intuitively, a solution quality q = 0 means no solution was computed while a solution

quality q = 1 means an optimal solution was computed.

The meta-level control problem for monitoring and controlling adjustable algo-

rithms involves a time-dependent utility function. We consider a contract setting

for our experiments: the algorithm must terminate before a deadline of τ sec to

avoid a severe utility penalty Υ. This is common in planning and robotics where

a system has a fixed duration for planning before execution. Formally, given a so-

lution of quality q ∈ Φ at time step t ∈ Ψ, the time-dependent utility function is

U(q, t) = [t ≤ τ] · UI(q) − [t > τ] · Υ, where UI(q) = ιq is the utility of a solution

of quality q ∈ Φ for an intrinsic value multiplier ι. It is important to note that our

approach can support any given well-behaved time-dependent utility function.

Our approach is trained on randomized instances of every problem for both do-

mains. Each problem only involves a few hours of training. Algorithm 3 uses typical

settings for deep Q-learning. The action-value network N is a fully connected neural

network with two hidden layers of 64 and 32 nodes with ReLU activation and a linear

output layer of 5 nodes. The step size α1 is 0.0001. The target action-value network

step size α2 is 0.001. The exploration strategy E is ε-greedy action selection with an

exploration probability ε that is annealed from 1 to 0.1 over 1000 episodes. The expe-

rience buffer capacity `1 is ∞. The number of episodes `2 is 15000 and 30000 for the

anytime weighted A* and RRT* domains. The initialization period `3 is 1000. The

minibatch size `4 is 64. The duration ∆ is 1/20th of the contract. Our experiments

were run on an AMD Ryzen 3900X processor with 32 GB of RAM.

92

Our open source Julia library, Metareasoning.jl, was used in our experiments: it

offers our approach and the RL environments for anytime weighted A* and RRT*.

4.6.1 Common Benchmark Domain

We begin by considering the common benchmark domain that uses anytime weighted

A* to solve a range of heuristic search problems. Here, we compare our approach to

standard approaches that run anytime weighted A* with either a static weight, a

dynamic weight that increases from the lowest weight after each solution, or a dy-

namic weight that decreases from the highest weight after each solution given a set

of commonly used weights of 1, 1.5, 2, 3, 4, and 5.

We provide a brief description of each benchmark domain below. Each heuristic

search problem is selected to reflect problems that require different static weights

and problems for which counterintuitive behavior of anytime weighted A* was re-

ported [166]. The parameters are selected to avoid trivializing the problem by either

not having enough time so that no approach finds any solution or having too much

time so that every approach finds the optimal solution within the contract. The du-

ration τ corresponds to 6000, 6000, 3000, and 2400 node expansions for Sp, Isp, Tsp,

and Cnp. We enforce a node expansion limit instead of a duration for reproducibility.

4.6.1.1 Sliding Puzzle

An Sp instance has J = j2 − 1 tiles with each tile i labeled from 1 to J in a

j × j grid. Every tile must be moved from an initial position to a desired position

given a unit cost c(i) = 1 for moving a tile i. The sum of the Manhattan distances

from the current position of each tile to its desired position is used as an admissible

and consistent heuristic function h. The number of tiles J is 15. The difficulty of an

instance, as measured by the h-value of the initial configuration of all tiles, is chosen

randomly between 35 and 45. The meta-level control MDP has a set of settings K

that represent the difficulty for the instance of the problem.

93

4.6.1.2 Inverse Sliding Puzzle

An Isp instance is the same as an Sp instance except that there is an inverse cost

c(i) = 1/i for moving a tile i. This means that the sum of the Manhattan distances

from the current position of each tile to its desired position, weighted by the cost of

moving each tile, is used as an admissible and consistent heuristic function h.

4.6.1.3 Traveling Salesman Problem

A Tsp instance has J cities that must be visited along an optimal route given a

cost for each edge between a pair of cities. A percentage of the edges have an infinite

cost to control its sparsity. The total cost of a minimum spanning tree across the

unvisited cities with an infinite cost for no feasible tour is used as an admissible and

consistent heuristic function h. The number of cities J is chosen randomly between

25 and 35. The percentage of edges with an infinite cost is chosen randomly between

0% and 30%. The cost for each edge between a pair of cities is chosen randomly. The

meta-level control MDP has a set of settings K that represent the number of cities

and the percentage of edges with an infinite cost for the instance of the problem.

4.6.1.4 City Navigation Problem

A Cnp instance simulates navigating between two locations in different cities [166].

There are J cities scattered randomly on a j×j square such that each city is connected

by a random tour and to its nearest nJ cities. Each city contains I locations scattered

randomly throughout the city that is an i × i square such that each location in the

city is connected by a random tour and to its nearest nI locations. The edge between

a pair of cities costs the Euclidean distance plus an offset β1. The edge between a pair

of locations within a city costs the Euclidean distance scaled by a random number

sampled between 1 and a maximum β2. The goal is to find an optimal path from a

randomly selected location in one city to a randomly selected location in another city.

The Euclidean distance from the current location to the target location is used as an

94

Figure 4.5: The box plots of the final solution qualities produced by anytime weighted
A* for each approach over all instances of the Sp (top-left), Isp (top-right), Tsp
(bottom-left), and Cnp (bottom-right) heuristic search problems.

admissible and consistent heuristic h. The parameters are chosen such that J = 150,

j = 100, nJ = 3, I = 150, i = 1, nI = 3, α = 2, and β = 1.1. The meta-level control

MDP does not have any additional set of settings K for the instance of the problem.

4.6.1.5 Discussion

Figure 4.5 shows the results for the common benchmark domain. Note that the

crosses denote the mean, the bullets denote the outliers, and the median and upper

quartiles can be zero for some approaches. Generally, our approach tends to solve

more problem instances with higher solution quality than the best standard approach:

it exhibits a better mean solution quality than DEC for Sp and w = 1.5 for Isp

and also a comparable mean solution quality to w = 2 for Tsp and w = 1.5 for

Cnp. Overall, our approach is better than or comparable to the baselines approaches

without any need to tune the weight manually.

95

Figure 4.6: The first pair of analyses for the Sp heuristic search problem.

Figure 4.7: The second pair of analyses for the Sp heuristic search problem.

Figure 4.6 and 4.7 offers a set of analyses of our approach on the Sp heuristic

search problem. Let us begin by examining the first pair of analyses in Figure 4.6.

First, Figure 4.6(a) is a line chart that shows how the solution quality (left y-axis),

the solution quality upper bound (left y-axis), and the weight (right y-axis) change

with the node expansions for a select instance where the faded line for the typical

weight in the shaded region represents the mean weight and its standard deviation

over all instances (right y-axis). In this figure, our approach adjusts the weight based

on solution quality and other features that are not shown. Generally, the mean weight

increases as the node expansions increase to ensure generating at least one solution.

Second, Figure 4.6(b) is a line chart that shows how the mean final solution quality

(left y-axis) and the mean weight (right y-axis) change with the training episodes. In

96

this figure, our approach improves its final solution quality with each training episode

by learning gradually. In fact, the mean weight initially increases but then decreases

to generate higher quality solutions.

Let us turn to examining the second pair of analyses in Figure 4.7. Figure 4.7(a)

is a histogram that shows the distribution over all instances for the solution quality

error of our approach where solution quality error is the normalized difference between

the final solution quality of our approach and the final solution quality of the best

approach. In this figure, our approach exhibits a solution quality error of 0 for over

700 instances. While roughly 100 instances have a solution quality error of 1, this

is still better than the standard approaches. Figure 4.7(b) is a bar chart that shows

the importance as a percentage of the top 10 features learned by our approach where

importance is the mean absolute weight of a feature in the input layer of the neural

network. In this figure, it is clear that our approach uses the other features, such

as the current weight, the upper bound on solution quality, and the initial heuristic

value in addition to solution quality and computation time.

4.6.2 Mobile Robot Application

We now consider the mobile robot application that uses RRT* to solve motion

planning problems. RRT* is a popular algorithm that computes an optimal motion

plan from a start state to a goal state by rapidly expanding a tree via sampling

the map randomly [77]. Typically, RRT* has two hyperparameters: a growth factor

limiting how much the tree grows for each sample and an area of focus biasing where

each sample is drawn. Recent work on RRT* focuses on heuristically tuning the

growth factor and area of focus [156, 4, 80].

Here, we compare our approach that runs RRT* with an adjustable growth factor

and an adjustable area of focus to a standard approach that runs RRT* with a small

and large static growth factor and a uniform area of focus that spans the entire map.

97

Figure 4.8: The performance of our approach and the standard approach to RRT*
with a small and large growth factor over all instances of the motion planning problem.

Note that our approach can increase or decrease the growth factor between the small

and large growth factors of the standard approach and move a small square as the

area of focus either north, east, south, or west. Each motion planning problem is

a map with a high density of obstacles where the start and goal states are in the

bottom-left and top-right corners. The duration τ corresponds to 1000 samples. We

enforce a sample limit instead of a duration for reproducibility.

At a high level, the meta-level control problem for monitoring and controlling

RRT* is similar to anytime weighted A* but with a different set of features and ac-

tions of computation. The set of features includes the growth factor, the position

of an area of focus, the percentage of samples that have expanded the tree, a lower

bound on the remaining distance to the goal state, an estimate of the free space of

the map, an estimated average size of the obstacles of the map, and a score for each

possible area of focus that considers an estimated probability of improving the current

path, the fraction of the current path within that area of focus, the fraction of the

tree within that area of focus, and the average curvature of the current path within

that area of focus. The actions of computation includes the internal hyperparameter

that interrupts the algorithm or executes the algorithm for another time step, the

internal hyperparameter that increases or decreases the growth factor, and the inter-

nal hyperparameter that moves the position of the area of focus either north, east,

98

1 2

3 4
Figure 4.9: The evolution of RRT* over the number of samples for our approach on
a select instance of the motion planning problem from Checkpoint 1 to 4.

south, or west. Note that the other attributes of the MDP follow directly from the

meta-level control problem for adjustable algorithms.

4.6.2.1 Discussion

Figure 4.8 shows how the mean solution quality changes with the number of sam-

ples for each approach. In general, our approach outperforms the standard approach

to RRT*: it produces a higher mean solution quality than the standard approach by

99

adjusting the growth factor and the area of focus. In particular, our approach reaches

a mean solution quality of roughly 0.72 while the standard approach to RRT* reaches

a mean solution quality of 0.62 for the large growth factor and a mean solution quality

of 0.59 for the small growth factor. It is important to highlight that our approach

is comparable to or higher than the standard approach to RRT* over any number of

samples, which indicates that it is sampling in a more efficient way that results in

better motion plans. Given that we did not modify any of the settings of our deep

reinforcement learning architecture that were originally used for anytime weighted

A*, this result is encouraging. It is likely that our results would be even stronger had

we modified the setting of our deep reinforcement learning architecture.

Figure 4.9 illustrates how our approach adjusts RRT* in practice. Note that the

black shapes are the obstacles, the red and green circles are the start and goal states,

the blue lines are the current tree, the cyan circles are the samples, the purple line

is the current path, and the orange box is the current area of focus. In general, our

approach guides the tree from the start state to the goal state of the map by focusing

on the frontier that has been less explored to compute an initial path quickly. In

particular, for all checkpoints, we observe that the area of focus is always placed at

the frontier of the existing tree of RRT*. Intuitively, our approach shifts the area of

focus to the frontier in order to compute an initial motion plan as quickly as possible.

Once our approach has computed an initial motion plan, it tends to favor the center of

the map near this motion plan in order to improve it as quickly as possible. Overall,

our approach learns how to shift the area of focus to specific areas of the map, which

outperforms the standard approach that simply samples from the entire map, by not

only reducing how long it takes to compute an initial motion plan but also reducing

how long it takes to improve that initial motion plan.

100

4.7 Summary

This chapter introduces a metareasoning approach to hyperparameter tuning of

adjustable algorithms. By using deep reinforcement learning, our approach not only

boosts the performance of an adjustable algorithm by tuning its hyperparameters at

runtime on a specific instance of a problem, but it also eliminates any need for manual

hyperparameter exploration. In our experiments, we show that our approach boosts

overall performance on a common benchmark domain that uses anytime weighted A*

to solve a range of heuristic search problems and a mobile robot application that uses

RRT* to solve motion planning problems.

101

CHAPTER 5

METAREASONING FOR EXCEPTION RECOVERY

5.1 Introduction

Shifting to metareasoning for execution, we present a metareasoning approach

that enables autonomous systems to detect, identify, and handle exceptions during

operation. Autonomous systems have been deployed across many applications, such as

autonomous driving [167, 169, 107], space exploration [183, 165], search and rescue [31,

53, 111], and energy conservation in smart buildings [87]. At a high level, these

autonomous systems use decision-making models that have inherent limitations. For

example, a self-driving car may be designed to drive along a route but not capable of

passing different obstacles that block its route. Hence, in order to guarantee reliable

operation under normal conditions, some restricting assumptions must be satisfied.

This simplifies the complexity of designing, developing, and evaluating methods for

efficient planning and plan execution [43, 54]. However, as a result of relying on

incomplete decision-making models, the autonomous system may encounter a wide

range of unanticipated scenarios that cannot be resolved during normal operation.

A simple approach to ensuring that the necessary conditions of normal operation

are satisfied is to place the entire responsibility on the researcher or practitioner

deploying the autonomous system. However, although relying on human judgment

can improve performance [173], it is desirable to limit human involvement when the

conditions of normal operation are violated. In fact, most of this responsibility should

ideally be delegated to the autonomous system itself. Therefore, in this chapter,

we propose a metareasoning approach that can pause a primary decision-making

102

Belief

Main Decision
Process

Exception Handler

Main Decision
Process

Time

Static Obstacle
Exception Volatile Obstacle

Exception

Figure 5.1: An example of an exception recovery metareasoning system.

model designed for normal operation and activate a secondary decision-making model

designed to restore normal operation—with or without human involvement—given

any violation of the necessary conditions of normal operation.

Despite tremendous progress in metareasoning centered on monitoring and con-

trolling anytime algorithms [60], there have been few attempts to build autonomous

systems that use metareasoning to recover from exceptional situations effectively.

Such a system poses many challenges. First, because an unanticipated scenario is

not captured by a decision-making model by definition, the model does not have the

information needed to resolve that exception. Next, while a decision-making model

can be extended to capture a set of unanticipated scenarios, a näıve approach will

exponentially grow the complexity of the model with the number of exceptions. This

is often infeasible for complex exceptions in real world applications. Finally, since

a decision-making model cannot capture every unanticipated scenario, there will al-

ways be exceptions that cannot be resolved properly. In short, building autonomous

systems that recover from exceptional situations effectively can be challenging.

There has been recent work in exception recovery that has focused on fault

diagnosis—particularly detecting and identifying faults—during normal operation.

For instance, many approaches diagnose faults by exploiting methods that use parti-

cle filters [38, 158, 98] or multiple model estimation with neural networks [119, 49].

103

While these approaches can detect and identify exceptions reliably, they do not offer a

comprehensive framework that can also handle exceptions without human assistance.

In particular, after an exception has been detected and identified by the autonomous

system, these approaches often cease operation to request human assistance. In this

chapter, building on recent work in fault diagnosis, our goal is to propose an exception

recovery framework that detects, identifies, and handles exceptions effectively.

Hence, we propose an approach for building exception recovery metareasoning

systems that use belief space planning for exception recovery. In Figure 5.1, this

approach makes decisions by interleaving two types of decision processes: a main

decision process designed for normal operation and a set of exception handlers de-

signed for exceptional operation. As the system completes its task, it activates its

decision processes based on a belief over potential exceptions. If its belief suggests

normal operation, it executes its main decision process. Otherwise, if its belief in-

dicates exceptional operation, it suspends its main decision process and executes an

exception handler. It can also gather information or, if necessary, transfer control

to a human operator given any uncertainty in its belief. At a high level, exception

recovery metareasoning systems interleave a central decision process with a set of

exceptions handlers by using a belief over a set of potential exceptions.

5.1.1 Contributions

In this chapter, we make the following contributions: (1) a formal definition of an

exception recovery metareasoning system and its key properties, (2) a framework for

profiling decision processes, (3) an application of an exception recovery metareasoning

system to an autonomous driving domain, and (4) a demonstration that our approach

is effective in simulation and on a fully operational prototype.

104

5.2 Exception Recovery

Given the complexity of the real world, autonomous systems have traditionally

relied on limited decision-making models that depend on a number of simplifying

assumptions to support planning and execution [43]. However, due to these limi-

tations, autonomous systems can encounter unanticipated scenarios that cannot be

resolved effectively. For instance, an autonomous vehicle can encounter different types

of obstacles along its route. Achieving the complete potential of autonomous systems

therefore requires the capability to recover from exceptional situations [6].

5.2.1 Exception Recovery Metareasoning Systems

In order to recover from exceptions, an exception recovery metareasoning system

maintains a belief over a set of potential exceptions. The system uses this belief to

reason about how to interleave a set of decision processes. Naturally, the set of decision

processes includes the regular process, which makes decisions using a model designed

for a particular task. If the system believes that there is not an exception, suggesting

normal operation, it executes the regular process. The set of decision processes also

includes a set of exception handlers, which make decisions based on a model designed

for a specific exception. If the system believes that there is an exception, indicating

exceptional operation, it executes an exception handler. It is also possible for the

system to transfer control to a human operator given any uncertainty over many

different exceptions. As an example, in a self-driving car, the regular process could

be for navigating a route while the exception handlers could be for handling different

types of obstacles. In short, by using its belief over a set of potential exceptions, the

system alternates between regular decision making and exception handling.

Figure 5.2 illustrates how an exception recovery metareasoning system partitions

its belief space over the set of potential exceptions into regions that are associated

with distinct decision processes. Intuitively, each region of the belief space indicates

105

Exception
Handler 1

Exception
Handler 2

Exception
Handler 3 Regular

Process

Figure 5.2: The space of beliefs of an exception recovery metareasoning system over
the set of potential exceptions where each region is linked to a decision process.

whether or not the assumptions of the regular process have been violated. In general,

the system executes whichever decision process is associated with the region that

contains its current belief. In this diagram, the regular process corresponds to the

largest region of the belief space. This region denotes normal operation because

each belief indicates that the system has not encountered an exception. Thus, when

its belief lies within this region, the system executes the regular process. Similarly,

each exception handler correspond to a smaller region of the belief space. These

regions mark exceptional operation since each belief suggests that the system has

encountered an exception. Hence, when its belief lies within one of these regions, the

system executes an exception handler instead. In short, the system simply executes

whichever decision process is associated with the region containing its current belief.

The execution of an exception recovery metareasoning system can be viewed as a

two-level hierarchy of decision processes: the high-level decision process is the excep-

tion recovery metareasoning system while the low-level decision process is the regular

process or an exception handler. When the exception recovery metareasoning system

executes the regular process or an exception handler, which can be viewed as a form of

an option [141, 13], it transfers control to that decision process until a completion con-

dition has been satisfied. The completion condition of the decision process depends

on whether it is the regular process or an exception handler: the system executes the

regular process for a fixed duration and an exception handler until termination. Once

106

its completion condition has been met, the decision process generates an indicator

that describes the status of its operation. Finally, after observing the indicator gen-

erated by the decision process, the exception recovery metareasoning system resumes

execution once again. This repeats until the exception recovery metareasoning system

has been terminated given the termination of the regular process.

Every decision process generates an indicator that describes its status after execu-

tion. An exception recovery metareasoning system uses each indicator to update its

belief over potential exceptions. The information offered by the indicator, however,

depends on the decision process. Because the objective of the regular process is to

complete a specific task, it can generate a success or a failure signal (e.g., the route

has been or cannot be completed) or a signal that suggests whether or not an excep-

tion has been encountered (e.g., an obstacle has been encountered). However, since

the goal of an exception handler is to resolve a particular exception, it can generate

a success signal (e.g., the obstacle is no longer blocking) or a signal that suggests

different modes of failure (e.g., the obstacle is still blocking). Note that it is also

possible for a decision process to generate other indicators, such as an abort signal if

its execution is deemed no longer necessary.

An exception recovery metareasoning system always has a default exception han-

dler, called the human assistance exception handler, that is assumed to handle any

exception that is not yet linked to an exception handler. In particular, if there is

no exception handler designed for a specific exception, it will execute the human as-

sistance exception handler as a general form of exception handling. For example, if

a self-driving car is blocked by an unrecognized obstacle, it will transfer control to

the driver rather than use an obstacle handler. Thus, as new exception handlers are

added to the system, its reliance on human assistance will diminish appropriately.

An exception recovery metareasoning system has standard attributes along with

exceptions, decision processes, and indicators. That is, the system has standard states,

107

standard actions, and standard observations. For instance along with its correspond-

ing standard observations, an autonomous vehicle could have standard states for wait

time and standard actions for waiting and edging in order to support information

gathering during normal and exceptional operation. The system has a standard tran-

sition function, standard reward function, and standard observation function as well.

Since an exception recovery metareasoning system can naturally be represented as

a belief space planning problem, we offer a formal description of an exception recovery

metareasoning system by representing it as a POMDP below.

Definition 14. An exception recovery metareasoning system can be described

as a POMDP 〈E,P, I,S,A,T ,R,Ω,O〉, where

• E is a set of exceptions that can be encountered (denoted as ei),

• P is a set of decision processes that can be executed (denoted as pj),

• I is a set of indicators that can be generated (denoted as ik),

• S = S × E is a set of factored states that is cross product of a set of standard

states S and a set of exceptions E,

• A = A∪P is a set of actions that is a union of a set of standard actions A and

a set of decision processes P ,

• T : S ×A× S → [0, 1] is a transition function that is composed of a standard

transition function T : S × A × S → [0, 1], a transition profile τp : S → 4|S|,

and an exception profile ξp : S →4|E|,

• R : S×A×S → R is a reward function that is composed of a standard reward

function R : S × A× S → [0, 1] and a cost profile ζp : S → R,

• Ω = Ω∪I is a set of observations that is a union of a set of standard observations

Ω and a set of indicators I, and

108

• O : S × A × Ω → [0, 1] is an observation function that is composed of a

standard observation function O : S × A × Ω → [0, 1] and an indicator profile

ιp : S →4|I|.

At a minimum, the first three attributes of an exception recovery metareasoning

system contain several elements. The set of exceptions E requires normal operation

η. The set of decision processes P requires the regular process γ and the human

assistance exception handler λ. The set of indicators I requires a success signal σ

and a failure signal φ. Note that the automated exception handler set, without the

regular process or the human assistance exception handler, is denoted as H.

There are several principles that should be followed when building an exception

handler. First, in order to cover as many exceptions as possible, an exception handler

should be general rather than narrowly specialized. For instance, a self-driving car

should have exception handlers for broad classes of obstacles that exhibit similar

properties and behavior. Next, during the handling of an exception, an exception

handler should meet the requirements of the regular process to prevent the exception

handler from impacting the regular progress. Finally, by monitoring the conditions

for which it has been activated, an exception handler should terminate itself if it

determines that its execution is no longer necessary.

Following recent work on metareasoning for anytime algorithms [150, 149, 23], it is

natural to view an exception recovery metareasoning system as a meta-level controller

that monitors and controls the regular process at fixed intervals. In particular, the

system monitors the regular process by maintaining a belief over whether or not the

assumptions of normal operation have been violated and controls the regular process

by executing it or suspending it to execute an exception handler. As a meta-level

controller, the systems weighs the likelihood of normal and exceptional operation with

the cost of executing the regular process or an exception handler.

109

Figure 5.3: An exception recovery metareasoning system that interleaves the regular
process with exception handlers based on its belief over possible exceptions.

Figure 5.3 offers an intuitive illustration of an exception recovery metareasoning

system. Generally, in order to complete a particular task, the system runs different

decision processes: it either executes the regular process for a fixed duration or an

exception handler until termination. Once a decision process—that is, either the

regular process or an exception handler—has satisfied its completion condition, it

generates an indicator that can be used to update the belief of the system: the regular

process emits an indicator after a fixed duration while an exception handler emits an

indicator after termination. In this diagram, the system executes the regular process

that emits indicator that suggest whether or not an exception has been encountered.

However, in between several executions of the regular process, the system executes an

exception handler that succeeds (emitting a success signal) and the human assistance

exception handler that succeeds (emitting a success signal). During the execution of

an exception handler, the regular process can be viewed as being suspended or paused.

Once the regular process has reached a goal state or a dead end state, it terminates

and emits a success or failure indicator that terminates the system.

5.2.2 Decision Process Profiles

Although a decision process can make decisions using a sophisticated decision-

making model, an exception recovery metareasoning system does not rely on the

internal mechanisms of a decision process. A decision process is instead summarized

by a set of profiles. Intuitively, each profile forms as an abstraction over some feature

110

of the internal mechanisms of the decision process within the system: that is to

say, each profile describes a different dimension of the decision process within the

context of the system. These profiles are used to compose the transition, reward,

and observation functions in the definition of an exception recovery metareasoning

system. We define each decision process profile below.

The first decision process profile indicates how a decision process transitions

through the standard state space of the system. This can be expressed as a func-

tion that maps a factored state to a probability distribution over all standard states.

Definition 15. A transition profile, τp : S →4|S|, gives the probability of ending

up in state s′ ∈ S after executing the decision process p ∈ P in state s ∈ S.

The second decision process profile captures how a decision process transitions

through the exception space of the system. This can be viewed as a function that

maps a factored state to a probability distribution over all exceptions.

Definition 16. An exception profile, ξp : S →4|E|, gives the probability of ending

up with exception e′ ∈ E after executing the decision process p ∈ P in state s ∈ S.

The third decision process profile encapsulates the cost of the system executing a

decision process. This can be characterized as a function that maps a factored state

to an expected immediate cost of a decision process as follows.

Definition 17. A cost profile, ζp : S → R, gives the expected cost of executing the

decision process p ∈ P in state s ∈ S.

The fourth decision process profile characterizes how a decision process emits an

indicator to the system. This can be specified as a function that maps a factored

state to a probability distribution over all indicators below.

Definition 18. An indicator profile, ιp : S →4|I|, gives the probability of observ-

ing an indicator i ∈ I after executing the decision process p ∈ P and ending up in

state s ∈ S.

111

Finally, putting all of these profiles together, we present the complete description

of a decision process as follows.

Definition 19. A decision process, p ∈ P , can be described as a tuple of profiles

〈τp, ξp, ζp, ιp〉 that summarize its operation such that τp is the transition profile, ξp is

the exception profile, ζp is the cost profile, and ιp is the indicator profile.

All decision processes use a policy to make decisions. A policy can be calculated

in many ways. In most cases, it is possible to derive the policy from different decision-

making models, such as an MDP, a POMDP, a decentralized POMDP, or an SSP. It

is also possible for a domain expert to derive the policy by hand. Once the policy has

been calculated, the transition, exception, and indicator profiles can be calculated

either by hand or by sampling trajectories of when each decision process is executed

by the exception recovery metareasoning system [167].

Figure 5.4 illustrates the transition of an exception recovery metareasoning system

during the execution of a decision process. Intuitively, while its internal mechanisms

may be sophisticated, a decision process is simply an action that is available to the

system: when the system executes a decision process in a particular state, it tran-

sitions through states in its state space. In this illustration, the exception recovery

metareasoning system executes a decision process p starting in state s = (s, e) and

ending in state s′ = (s′, e′). Once the system initiates the decision process in state

s = (s, e), it transfers control to that decision process. The decision process then

transitions through the states in its own state space by performing actions in its own

action space starting from its start state (the first doubled node) and ending in its

goal state (the second doubled node). After the decision process has been terminated,

it transfers control back to the system in state s′ = (s′, e′).

112

State s′

Standard State s′ Exception e′

State s

Standard State s Exception e
Execute Decision Process p

Introspective Autonomous System 〈E, P, I, S,A, T,R,Ω,O〉

Decision Process p = ⟨ , , , ⟩τp ξp ζp ιp
Initiate

Decision Process p
Terminate

Decision Process p

Figure 5.4: The transition of an exception recovery metareasoning system in its state
space during the execution of a decision process.

5.2.3 Dynamics

Now, by using the formal definition of a decision process, we can express the

transition, reward, and observation functions of an exception recovery metareasoning

system. For the transition function and the reward function, if the action is a decision

process, the relevant profiles are used. Otherwise, the relevant standard function

is used. Given a state s = (s, e) ∈ S, an action a ∈ A, and a successor state

s′ = (s′, e′) ∈ S, we describe the transition function and the reward function below.

T (s,a, s′) =


τa(s, s′)ξa(s, e′) if a ∈ P

T (s,a, s′) otherwise

R(s,a, s′) =


−ζa(s) if a ∈ P

R(s,a, s′) otherwise

For the observation function, if the action is a decision process and the observation

is an indicator, the relevant profile is used. However, if the action is a standard action

and the observation is a standard observation, the relevant standard function is used.

Otherwise, the probability is nil. Given a successor state s′ = (s′, e′) ∈ S, an action

a ∈ A, and an observation ω ∈ Ω, we express the observation function as follows.

113

O(s′,a,ω) =


ιa(s′,ω) if a ∈ P and ω ∈ I

O(s′,a,ω) if a ∈ A and ω ∈ Ω

0 otherwise

5.2.4 Robustness

An exception recovery metareasoning system enables the regular process to com-

plete a task by handling exceptions that can be encountered during operation with a

set of exception handlers. These exception handlers are critical to the effectiveness of

the system. We therefore define the main properties of an exception handler below.

Definition 20. An exception handler, h ∈ H, is strong if it is guaranteed to handle

a specific exception e ∈ E for all states s ∈ S.

Definition 21. An exception handler, h ∈ H, is conditionally strong if it is

guaranteed to handle a specific exception e ∈ E for some states s ∈ S.

Definition 22. An exception handler, h ∈ H, is weak if it is not strong or condi-

tionally strong.

Recall that the exception profile of a decision process describes its level of effec-

tiveness in handling a particular exception. Intuitively, for a strong exception handler

(Definition 20) and a conditionally strong exception handler (Definition 21), the ex-

ception profile of the decision process must indicate that a particular exception is

handled with certainty for either all states or some states respectively. Otherwise,

the exception handler is considered to be weak (Definition 22).

Finally, given all of these properties, we define the central property of an exception

recovery metareasoning system in the following way.

Definition 23. An exception recovery metareasoning system is robust if there exists

a strong or conditionally strong exception handler, h ∈ H, that is guaranteed to handle

any exception e ∈ E that may arise in any state s ∈ S during operation.

114

Figure 5.5: An example route with several obstacles.

5.3 Autonomous Driving Domain

In this section, we provide an application of exception recovery metareasoning

systems to an autonomous driving domain. In this domain, an autonomous vehicle

must drive along a route from a start location to a goal location. However, as the

autonomous vehicle progresses along this route, it can encounter different types of

obstacles of increasing volatility that must be resolved:

• a static obstacle that remains stopped permanently,

• a dynamic obstacle that stops and goes repeatedly, and

• an erratic obstacle that behaves unpredictably.

It is possible to extend the autonomous driving domain to include different obstacles,

such as a pedestrian, a parked car, a garbage truck, a road block, a car that is parallel

parking, a bicycle, a construction zone, or an obstructed traffic light [106, 107].

Figure 5.5 shows an example route that has a static obstacle (the parked car icon),

a dynamic obstacle (the garbage truck icon), and an erratic obstacle (the bear paw

icon) that must be passed by the autonomous vehicle. As discussed earlier, recall that

an exception recovery metareasoning system requires a set of decision processes that

includes the regular process and the set of exception handlers. We describe the regular

process, the set of exception handlers, and the exception recovery metareasoning

system of the autonomous driving domain below.

115

5.3.1 Navigation Problem

First, we consider the regular process of the system. The decision-making model

of the regular process is a navigation problem where the autonomous vehicle must

drive along a route from a start location to a goal location. In particular, for the

regular process γ ∈ P , the navigation problem can be represented by the tuple

〈Sγ, Aγ, T γ, Cγ, sγ0 , s
γ
g〉, where

• Sγ is a set of states that represent intersections,

• Aγ is a set of actions that represent road segments,

• T γ : Sγ × Aγ × Sγ → [0, 1] is a transition function that represents whether or

not an intersection s ∈ Sγ is connected to an intersection s′ ∈ Sγ by a road

segment a ∈ Aγ,

• Cγ : Sγ ×Aγ × Sγ → R+ is a cost function that represents the length of a road

segment a ∈ Aγ that connects an intersection s ∈ Sγ to an intersection s′ ∈ Sγ,

• sγ0 is a start intersection, and

• sγg is a goal intersection.

The navigation problem assumes that all road segments do not have any obstacles

at its level of abstraction. Given this limitation, when the autonomous vehicle is

driving from one intersection to another intersection through some road segment, the

navigation problem makes the assumption that the road segment will be traversed

successfully. In the real world, however, there may be a number of obstacles that

must be handled by the autonomous vehicle on any road segment.

5.3.2 Obstacle Handling Problem

Next, we consider each exception handler of the system. At minimum, the ex-

ception handlers include a human assistance obstacle handler λ that is guaranteed

116

to resolve any obstacle with a high penalty. More importantly, the exception han-

dlers also include an automated obstacle handler designed for each obstacle. Each

decision-making model is based on a version of the obstacle handling problem. That

is, for each automated obstacle handler, h ∈ H, the obstacle handling problem

can be expressed as the tuple 〈Sh, Ah, T h, Ch, sh0 , s
h
g〉, where

• Sh = Shp × Shl × Shr × Shb is a set of factored states such that Shp describes

the position of the autonomous vehicle (obstructed/passing/passing with cau-

tion/collision/unobstructed), Shl describes whether or not the left lane is avail-

able (open/closed), Shr describes whether or not the right lane is available

(open/closed), and Shb describes whether or not the obstacle is blocking (block-

ing/not blocking),

• Ah = {Stop,Edge,Go,Pass,PassWithCaution} is a set of actions that

represents the maneuvers of the autonomous vehicle,

• T h : Sh×Ah×Sh → [0, 1] is a transition function that multiplies the probabilities

of a range of scenarios including the probability Pr(s′l|sl) that the availability

of the left lane changes, the probability Pr(s′r|sr) that the availability of the

right lane changes, and the probability Pr(s′b|sb) of whether or not the obstacle

is blocking changes,

• Ch : Sh ×Ah × Sh → R+ is a cost function with unit cost for every state other

than a goal state,

• sh0 is a start state with an obstructed position, and

• shg is a goal state with an unobstructed position.

Note that any state with a collision or infinite waiting is an absorbing dead end state

with unit cost. This may occur in two situations: the Go action is executed when the

117

state factor sb is blocking and the Pass or PassWithCaution action is executed

when the state factor is closed sl and the state factor sr is closed.

All obstacles handlers are based on the obstacle handling problem. In particular,

the transition function of the obstacle handling problem has been modified to follow

the expected behavior of each type of obstacle that can be encountered by the au-

tonomous vehicle. This involves adjusting the probability Pr(s′b|sb) of whether or not

the obstacle is blocking changes. First, for the static obstacle handler, this probabil-

ity will be low because a static obstacle has a low likelihood of changing its position.

As a result, the policy of the static obstacle handler indicates to pass the obstacle

immediately (the Pass action). Next, for the dynamic obstacle handler, this proba-

bility will be moderate since a dynamic obstacle has a medium likelihood of changing

its position. Thus, the policy of the dynamic obstacle handler indicates to pass the

obstacle cautiously (the PassWithCaution action). Finally, for the erratic obstacle

handler, this probability will be high provided that an erratic obstacle handler has

a high likelihood of changing its position. Hence, the policy of the erratic obstacle

handler indicates to stop and wait for the obstacle to move (the Stop action).

5.3.3 Exception Recovery Metareasoning Vehicle

Given the regular process and each exception handler, we consider the exception

recovery metareasoning system. The exception recovery metareasoning vehicle,

v, can be described as an exception recovery metareasoning system represented as a

tuple 〈Ev, P v, Iv,Sv,Av,T v,Rv,Ωv,Ov〉, where

• Ev = {η, e1, e2, e3} is a set of exceptions such that η is no obstacle, and e1, e2,

and e3 is the presence of a static, dynamic, and erratic obstacle respectively,

• P v = {γ, λ, h1, h2, h3} is a set of decision processes such that γ is the regular

process, λ is the human assistance obstacle handler, and h1, h2, and h3 is the

static, dynamic, and erratic obstacle handler respectively,

118

• Iv = {σ, φ, ib, im} is a set of indicators such that σ is the success signal, φ is the

failure signal, and ib and im are signals that indicate whether or not an obstacle

is blocking and moving respectively,

• Sv = Sv × Ev is a set of factored states: a standard state set Sv and the

exception set Ev such that Sv is the wait time (none/short/medium/long),

• Av = Av ∪ P v is a set of actions: a standard action set Av = {Edge,Wait}

and the decision process set P v,

• T v : Sv ×Av × Sv → [0, 1] is a transition function,

• Rv : Sv ×Av × Sv → R is a reward function,

• Ωv = Ωv ∪ Iv is a set of observations that is a union of a standard observation

set Ωv and the indicator set Iv, and

• Ov : Sv ×Av ×Ωv → [0, 1] is an observation function.

Note that a monolithic POMDP that reasons about both the navigation problem

and the obstacle handling problems together would rapidly become computationally

intractable. Given the navigation problem with |Sγ| states and n obstacle handling

problems with |Sh| states, such a POMDP requires |Sγ| · |Sh|n states. For instance,

if there are 30 intersections and 3 types of obstacles, there would be 1920000 states,

which cannot be solved even with state-of-the-art POMDP solvers [110, 135].

5.3.4 Analysis

Our goal is to show that the exception recovery metareasoning vehicle can com-

plete its route by handling all obstacles that can be detected and identified during

navigation. This involves proving that all obstacle handlers are strong and the ex-

ception recovery metareasoning system is robust. First, for an obstacle handler to

be strong, it must always handle a particular obstacle across all states of the system.

119

To do this, the obstacle handler problem must be guaranteed to reach the goal state,

which indicates that the obstacle has been handled. We must therefore prove that the

obstacle handling problem is an SSP, a class of decision-making models that ensures

goal reachability [21, 82]. We show that every obstacle handler is strong below.

Proposition 1. An obstacle handler, h ∈ Hv ⊂ P v, is strong.

Proof Sketch. At a high level, in order to show that an obstacle handler, h ∈ Hv ⊂ P v,

is strong, we prove that the obstacle handling problem is an SSP. The problem must

satisfy two important conditions to be an SSP. First, there must exist a proper policy

such that there is an action that can reach the goal state with unit probability for

all states. Second, all improper policies must incur an infinite cost for all states from

which it cannot reach the goal state with unit probability.

We begin with the first condition. There are two scenarios where the goal state

cannot be reached due to a dead end state: either the Go action is selected when the

state factor sb is blocking or the Pass or PassWithCaution action is selected when

the the state factors sl and sr are closed. A dead end state, however, can be avoided

using the Stop action. Because the blocking probability Pr(s′b|sb) of the transition

function is nonzero, the obstacle will eventually no longer be blocking and the goal

state can be reached using the Go action. Thus, since there exists a proper policy,

the first condition is met. We now prove the second condition. By definition, a dead

end state is an absorbing state with nonzero cost. Hence, since all policies that can

transition to a dead end state incur an infinite cost, the second condition is met.

Therefore, since the obstacle handling problem is an SSP because it satisfies both

SSP conditions, it follows that the obstacle handler is strong.

Finally, given that all obstacle handlers are strong, it is easy to show that the

exception recovery metareasoning system is robust as follows.

Theorem 1. An exception recovery metareasoning vehicle, v, is robust.

120

Proof Sketch. To show that the exception recovery metareasoning vehicle, v, is robust,

we prove there exists an obstacle handler that can always handle any obstacle. By

Proposition 1, we know that all obstacle handlers are strong. Therefore, the exception

recovery metareasoning vehicle is robust.

5.4 Demonstration

In this section, we demonstrate that the exception recovery metareasoning ve-

hicle is effective in simulation and on a fully operational prototype. In particular,

we compare different versions of the exception recovery metareasoning vehicle to an

autonomous vehicle that does not have exception recovery. Each exception recov-

ery metareasoning vehicle can only execute a specific set of obstacle handlers. The

set of obstacle handlers, Hvi ⊂ P vi , that are available to each exception recovery

metareasoning vehicle vi is listed below:

• Hv1 = {λ},

• Hv2 = {λ, h1},

• Hv3 = {λ, h1, h2}, and

• Hv4 = {λ, h1, h2, h3}

The autonomous vehicle that does not have exception recovery cannot use any obsta-

cle handlers. We refer to this autonomous vehicle as the regular autonomous vehicle.

In simulation, each experiment represents an instance of the navigation problem

with different obstacle handling problems: the exception recovery metareasoning ve-

hicle has to complete a route with static, dynamic, and erratic obstacles from a start

location to a goal location. To do this, we run an exception recovery metareasoning

vehicle process. This process uses a belief to interleave decision process during opera-

tion. When the current belief suggests that normal operation, the navigation process

121

Obstacle Handlers Incidents Autonomy (%) Transfers Time (s)

None 12 — — —
λ 0 51.4 12 750.2
λ, h1 0 60.3 9 700.0
λ, h1, h2 0 72.0 6 649.8
λ, h1, h2, h3 0 84.3 3 599.5

Table 5.1: The performance of all autonomous vehicles on exception recovery.

Figure 5.6: A fully operational exception recovery metareasoning vehicle prototype.

is executed. However, when the current belief suggests exceptional operation, an ob-

stacle handling process is executed. The exception recovery metareasoning vehicle

process finally terminates when the navigation process has been terminated.

All autonomous vehicles traverse a route with 3 instances of each type of obstacle

that can be resolved by a particular obstacle handler and 3 instances of an unrecog-

nized obstacle that can only be resolved by the human assistance obstacle handler for

a total of 12 obstacles. Other routes can be constructed using the observation that

the expected time required to handle each type of obstacle remains consistent: han-

dling a static obstacle, a dynamic obstacle, an erratic obstacle, and an unrecognized

obstacle requires 12.3, 15.1, 12.5, and 14.7 seconds respectively. Due to implementa-

tion constraints, transferring control to and from the driver safely requires roughly 8

seconds following recent work on the transfer of control problem [167, 2, 170].

Table 5.1 shows the performance of the regular autonomous vehicle and each ver-

sion of the exception recovery metareasoning vehicle. First, the Obstacle Handlers

column lists the obstacle handlers available to the vehicle. Second, the Incidents col-

122

umn includes the number of exceptions that prevent the vehicle from completing its

route due to an exception that leads to a collision or infinite waiting. Third, the Au-

tonomy column shows the percentage of time that the vehicle is driven autonomously.

Fourth, the Transfers column includes the number of activations of the human as-

sistance exception handler by the vehicle. Fifth, the Time column presents the time

needed for the vehicle to complete its route in seconds. Note that the dashes denote

that the vehicle cannot complete its route for the regular autonomous vehicle.

On a fully operational autonomous vehicle prototype, we demonstrate that the

exception recovery metareasoning vehicle is effective on a route in the real world. The

route included a static obstacle, a dynamic obstacle, and an erratic obstacle. The

static obstacle was a parked vehicle, the dynamic obstacle was a slow-moving vehicle,

and the erratic obstacle was an unpredictable pedestrian. The vehicle completed its

route by resolving all obstacles. Figure 5.6 shows the fully operational autonomous

vehicle prototype passing a dynamic obstacle during the demonstration.

5.5 Discussion

All experiments highlight the effectiveness of the exception recovery metareasoning

vehicle in the real world. In general, as each obstacle handler is added to the exception

recovery metareasoning vehicle in Table 5.1, the scope of autonomy increases while

the duration of the route decreases without any potential incidents. Initially, when

the vehicle cannot execute any obstacle handlers, it does not complete its route due

to 12 potential incidents. Once the human assistance obstacle handler is added to

the vehicle, the vehicle completes its route without any potential incidents since a

human operator can handle all obstacles that can be encountered during navigation.

However, because the vehicle cannot handle any obstacle without a human operator,

it exhibits a low level of autonomy (51.4%) and route time (750.2 s), which includes 12

transfers. More importantly, as each obstacle handler is added to the vehicle, its level

123

of autonomy increases without any potential incidents. Finally, when the vehicle can

execute all obstacle handlers, its exhibits a high level of autonomy (84.3%) and route

time (599.5 s), which only includes 3 transfers. The remaining unknown obstacles

cannot be handled by any obstacle handler: they must be handled by the human

assistance obstacle handler instead. We emphasize that the duration of the route

decreases because the overhead of transferring control to a human operator decreases

as each obstacle handler is added to the system. In short, the exception recovery

metareasoning vehicle becomes progressively more independent while decreasing the

duration of its route without impacting the safety and reliability of operation.

Exception recovery metareasoning systems offer a number of advantages over tra-

ditional autonomous systems. First, because the system reasons over a space of

beliefs, it can represent the uncertainty over whether or not the assumptions of the

regular process have been violated. Next, since the system has a belief over the set

of potential exceptions, it can perform actions that gather more information about

whether or not an exception has been encountered. Moreover, without increasing

the complexity of the regular process, each exception handler can exploit additional

information that is not available to the regular process that may be necessary to han-

dling a particular exception. Finally, the system offers a modular framework that can

easily be extended with additional exception handlers without affecting the effective-

ness of the regular process. Exception recovery metareasoning systems are therefore

a natural approach to recovering from exceptions during operation.

5.6 Summary

This chapter introduces a metareasoning approach to exception recovery. An ex-

ception recovery metareasoning system interleaves a regular process with a set of

exception handlers to detect, identify, and handle exceptions by using belief space

planning. By reasoning over the assumptions of normal operation, our approach in-

124

terleaves the regular process with different exception handlers to identify, detect, and

handle exception in a scalable way. In our experiments, we show that an application

of an exception recovery metareasoning system to autonomous driving is effective in

simulation and on a fully operational prototype.

125

CHAPTER 6

METAREASONING FOR SAFETY

6.1 Introduction

Going beyond our work in the previous chapter, we propose a metareasoning

approach that enables autonomous systems to maintain and restore safety during

operation. While planning and robotics experts carefully design, build, and test

the models used by autonomous systems for high-level decision making, it is often

infeasible for these models to ensure safety across every scenario within the domain

of operation [148]. This is due to the inherent challenge of specifying comprehensive

decision-making models that results from the complexity of the state space or action

space, a lack of information about the environment, or a misunderstanding of the

limitations of the autonomous system [17]. For example, a courier robot could use a

decision-making model with features for safely interacting with different types of doors

but not for navigating a crosswalk, which increases the risk of endangering people,

damaging property, or breaking the courier robot when navigating a crosswalk [18].

Therefore, as autonomous systems grow in independence and complexity [7], it is

critical to give them the ability to maintain and restore safety during operation.

A naive approach to giving an autonomous system the ability to maintain and

restore safety would be to use a comprehensive decision-making model with every

feature needed to cover every scenario within the domain of operation. Such a model,

however, would suffer from two main drawbacks in real world environments [148].

First, the model would simply be infeasible to design due to the intractability of

complex environments. Second, even if it were feasible to design, the model would

126

likely be infeasible to solve with exact or even approximate methods due to the

urgency of real-time environments. Hence, in order to avoid the infeasibility of a

monolithic model, this chapter offers a scalable framework for safe decision making in

autonomous systems that decouples the system into a primary process with features

that are necessary to achieving its main goal and secondary processes each with

features that are necessary to responding to a particular hazard.

There are several areas that work toward safety in autonomous systems that

have seen recent attention [7]. First, methods avoid negative side effects that cause

a system to interfere with its environment (e.g., by adding an extra term to its

objective function [124, 125] or modifying its decision-making model based on hu-

man feedback [174, 16]). Next, methods mitigate reward hacking that cause a sys-

tem to game its reward function (e.g., by applying ethical constraints to its behav-

ior [12, 130, 79, 144, 143, 145, 104] or treating its reward function as an observation

of its true objective function [56, 55, 88]). Finally, methods handle distributional

change that cause a system to perform poorly in a new environment that differs from

its original environment (e.g., by detecting anomalies using Monte Carlo methods

based on particle filters [38, 158, 98] or multiple model estimation based on neural

networks [119, 49]). However, while these areas are critical to safety in autonomous

systems, this chapter focuses on tweaking the operation of an autonomous system for

safe decision making.

In particular, we propose a disciplined, decision-theoretic metareasoning approach

to safe decision making in autonomous systems [142]. A safety metareasoning system

executes in parallel a task process that completes a specified task and safety processes

that each address a specified safety concern with a conflict resolver for arbitration.

Like a standard autonomous system, the task process completes a specified task

by performing an action in its current state following its policy. However, at fixed

intervals as the task process performs each action, there are two extra operations that

127

East
Analysis Task Process

Crevice Safety Process

Rough Terrain Safety Process

Dust Storm Safety Process

Conflict Resolver

None: SlowDown: SpeedUp: ShiftLeft: ShiftRight: Stop:

Crevice

Rough Terrain

Rough Terrain Dust Storm

Cell
(3, 7)

Cell
(4, 7)

N

S
EW

Figure 6.1: An illustration of a safety metareasoning system.

are not considered by a standard autonomous system. First, the safety processes each

address a specified safety concern by recommending a rating over a set of parameters

in its current state that can adjust the action being performed by the task process.

Second, the conflict resolver for arbitration selects the optimal parameter that will

adjust the action being performed by the task process given the ratings over the set of

parameters recommended by the safety processes. Our experiments highlight that our

approach optimizes the severity of safety concerns (the danger of particular hazards)

and the interference to the task (the overhead of safety on the main goal).

Consider the planetary rover exploration domain that is illustrated in Figure 6.1.

In this domain, a planetary rover executes a task process Υ that analyzes differ-

ent points of interest within a region of a planet and safety processes θc, θd, and θr

that address crevices, dust storms, and rough terrain with a conflict resolver σ for

arbitration. Consider the highlighted time slice that shows the planetary rover com-

pleting the analysis task while addressing crevices, dust storms, and rough terrain.

Intuitively, (1) the task process performs the East action starting in the cell (3, 7)

and ending in the cell (4, 7), (2) the safety processes θc, θd, and θr recommend the

parameters (∅,⇒), (∅,∅), and (⇓,∅), that can adjust the wheel rotation rate and

128

the steering of the East action being performed by the task process Υ, and (3) the

conflict resolver σ selects the optimal parameter (⇓,⇒) that adjusts the East action

being performed by the task process Υ given the parameters (∅,⇒), (∅,∅), and

(⇓,∅) recommended by the safety processes θc, θd, and θr. It is important to note

that this example refers to a parameter for each safety process instead of a rating

over a set of parameters in the interest of illustrating our approach.

6.1.1 Contributions

In this chapter, we make the following contributions: (1) a formal definition of a

safety metareasoning system and its key attributes, (2) a recommendation algorithm

for a safety process, (3) an arbitration algorithm for a conflict resolver, (4) an ap-

plication of a safety metareasoning system to a planetary rover exploration domain,

and (5) a demonstration that our approach is effective in simulation.

6.2 Safety

We begin by proposing the metareasoning framework, called a safety metarea-

soning system, that enables an autonomous system to maintain and restore safety.

A safety metareasoning system executes in parallel a task process that completes a

specified task and safety processes that each address a specified safety concern with

a conflict resolver for arbitration. We describe each attribute of our approach below.

6.2.1 Completing Tasks

The task process completes a specified task by performing an action in its current

state following its policy. The representation of the task process must reflect the

properties of the task. In this chapter, the task process is represented by an MDP,

a decision process for tasks with full observability, because it is a standard model

used throughout planning and robotics [140]. However, it is possible to use different

129

classes of decision processes for tasks with partial observability [76] or start and goal

states [82]. We define the task process more formally below.

Definition 24. The task process, which is represented by an MDP Υ = 〈S,A, T,R〉,

performs an action a = π(s) ∈ A in a state s ∈ S following a policy π in order to

complete a specified task.

Example. To complete the analysis task, the planetary rover in the highlighted area

of Figure 6.1 must execute the task process Υ that performs the East action starting

in the cell (3, 7) and ending in the cell (4, 7).

6.2.2 Addressing Safety Concerns

A safety process addresses a specified safety concern by recommending a rating

over a set of parameters in its current state that can adjust the action being performed

by the task process. The representation of a safety process is a variant of an MDP with

several attributes: a set of states that describe the safety concern, a set of parameters

that can adjust the action being performed by the task process, a transition function

that reflects the dynamics of the world, a severity function that reflects the danger of

particular hazards, and an interference function that reflects the overhead of safety

on the main goal. We define a safety process more formally below.

Definition 25. A safety process, which is represented by a variant of an MDP

θ = 〈S̄, P̄ , T̄ , φ, ψ〉 ∈ Θ, recommends a rating ρθs̄ over a set of parameters P̄ in a state

s̄ ∈ S̄ that can adjust the action a ∈ A being performed by the task process Υ in order

to address a specified safety concern.

• S̄ is a set of states that describe the safety concern.

• P̄ = P̄1 × P̄2 × · · · × P̄N is a set of parameters such that each parameter factor

P̄i adjusts the action a ∈ A being performed by the task process Υ with a ∅ ∈ P̄i

symbol that indicates no adjustment.

130

• T̄ : S̄ × P̄ × S̄ → [0, 1] is a transition function that represents the probability of

reaching a state s̄′ ∈ S̄ after using a parameter p̄ ∈ P̄ in a state s̄ ∈ S̄.

• φ : S̄ → {1, 2, . . . , L} is a severity function that represents the severity of the

safety concern in a state s̄ ∈ S̄ such that 1 is the lowest severity level and L is

the highest severity level where a severity level 1 ≤ ` ≤ L is strictly safer than

a severity level 1 ≤ `+ 1 ≤ L.

• ψ : P̄ → R+ is an interference function that represents the interference of a

parameter p̄ ∈ P̄ on the action a ∈ A being performed by the task process Υ.

Example. To address crevices, dust storms, and rough terrain, the planetary rover

in the highlighted area of Figure 6.1 must execute the safety processes θc, θd, and θr

that recommend the parameters (∅,⇒), (∅,∅), and (⇓,∅) that can adjust the wheel

rotation rate and steering of the East action being performed by the task process Υ.

It is critical that each safety process recommends a rating over a set of parameters

instead of only a parameter. Intuitively, this enables the conflict resolver to select

a parameter that addresses the safety concern of each safety process simultaneously.

Accordingly, for a given state, this rating contains |L| + 1 values for each of the |P̄ |

parameters. For each severity level, it includes the expected discounted cumulative

frequency of a severity level that is incurred by the safety process when using a

specific parameter in a given state. It also includes the expected discounted cumulative

interference that is incurred by the safety process when using a specific parameter

in a given state. These quantities allow a safety metareasoning system to not only

minimize each severity level but also minimize interference in the objective function

described later in the chapter. We define a rating with these values below.

Definition 26. A rating, ρθs̄, over a set of parameters P̄ in a state s̄ ∈ S̄ recom-

mended by a safety process θ ∈ Θ is expressed as a |P̄ | × (|L|+ 1) matrix:

131

ρθs̄ =



Φθ
s̄,p̄1

[1] Φθ
s̄,p̄1

[2] . . . Φθ
s̄,p̄1

[L] Ψθ
s̄,p̄1

Φθ
s̄,p̄2

[1] Φθ
s̄,p̄2

[2] . . . Φθ
s̄,p̄2

[L] Ψθ
s̄,p̄2

...
...

...
...

...

Φθ
s̄,p̄N

[1] Φθ
s̄,p̄N

[2] . . . Φθ
s̄,p̄N

[L] Ψθ
s̄,p̄N


.

When a safety process θ ∈ Θ uses a parameter p̄ ∈ P̄ in a state s̄ ∈ S̄, the expected

discounted frequency of a severity level 1 ≤ ` ≤ L incurred is the following:

Φθ
s̄,p̄[`] = [φ(s̄) = `] + γ

∑
s̄′∈S̄

T̄ (s̄, p̄, s̄′) min
p̄′∈P̄

Φθ
s̄′,p̄′ [`].

When a safety process θ ∈ Θ uses a parameter p̄ ∈ P̄ in a state s̄ ∈ S̄, the expected

discounted cumulative interference incurred is the following:

Ψθ
s̄,p̄ = ψ(p̄) + γ

∑
s̄′∈S̄

T̄ (s̄, p̄, s̄′) min
p̄′∈P̄

Ψθ
s̄′,p̄′ .

Note that the operator [·] denotes Iverson bracket notation.

6.2.3 Resolving Conflicts

The conflict resolver for arbitration selects the optimal parameter that will adjust

the action being performed by the task process given the ratings over the set of

parameters recommended by the safety processes. Intuitively, if no safety process or

only one safety process encounters its safety concern, there is no need for arbitration.

However, if multiple safety processes encounter their safety concerns, the conflict

resolver arbitrates by selecting the parameter that optimally addresses each safety

concern. The representation of the conflict resolver is a function that maps the ratings

over the set of parameters recommended by the safety processes to a parameter. We

define the conflict resolver more formally below.

132

Definition 27. The conflict resolver, σ : ρθ1s̄1 × ρ
θ2
s̄2 × · · · × ρ

θn
s̄n → P̄ , selects the

optimal parameter p̄ ∈ P̄ that adjusts the action a ∈ A being performed by the task

process Υ given the ratings ρθi
s̄i

over the set of parameters P̄ recommended by the safety

processes θi ∈ Θ for arbitration.

Example. For arbitration, the planetary rover in the highlighted area of Figure 6.1

must use the conflict resolver σ that selects the optimal parameter (⇓,⇒) that adjusts

the East action being performed by the task process Υ given the parameters (∅,⇒),

(∅,∅), (⇓,∅) recommended by the safety processes θc, θd, and θr.

The optimal parameter selected by the conflict resolver satisfies a lexicographic

objective function. This lexicographic objective function allows a safety metareason-

ing system to—in sequence—minimize each severity level and the interference of the

safety processes. First, in the order of decreasing severity level, this parameter must

minimize the maximum expected discounted frequency of each severity level incurred

across all safety processes (minimize the maximum anticipated danger of particular

hazards). Second, this parameter must minimize the maximum expected discounted

cumulative interference incurred across all safety processes (minimize the maximum

anticipated overhead of safety on the main goal). Formally, given each rating ρθi
s̄i

over the set of parameters P̄ recommended by each safety process θi ∈ Θ in its state

s̄i ∈ S̄i, we define this function below.

min
p̄∈P̄

[
max
θi∈Θ

[
Φθi
s̄i,p̄

[L]�Φθi
s̄i,p̄

[L− 1]� · · · �Φθi
s̄i,p̄

[1]�Ψθi
s̄i,p̄

]]
Note that the lexicographic preference operator � denotes that the left term is always

optimized prior to the right term without any slack.

6.2.4 Safety Metareasoning Systems

Putting the analysis process, the safety processes, and the conflict resolver to-

gether, we now provide a description of a safety metareasoning system below.

133

Figure 6.2: A safety metareasoning system that has the task process (red), a set of
safety processes (blue), and the conflict resolver (purple).

Definition 28. A safety metareasoning system, 〈Υ,Θ, σ〉, runs in parallel a

task process Υ that completes a specified task and safety processes Θ that each address

a specified safety concern with a conflict resolver σ for arbitration.

Figure 6.2 summarizes a safety metareasoning system. There is a task transition

for the task process Υ from the state st ∈ S at time step t ∈ H to the successor

state st+1 ∈ S at time step (t + 1) ∈ H given the action at = π(st) ∈ A. During

this task transition, there are many safety transitions for each safety process θi ∈ Θ

from the state s̄it̄ ∈ S̄i at time step t̄ ∈ H̄ to the successor state s̄it̄′ ∈ S̄i at time step

t̄′ ∈ H̄. In each safety transition, each safety process θi ∈ Θ recommends a rating

ρθi
s̄i
t̄

over the set of parameter P̄ to the conflict resolver σ. The conflict resolver σ

then selects the optimal parameter p̄t̄ ∈ P̄ that satisfies the lexicographic objective

function. Once the optimal parameter p̄t̄ ∈ P̄ is selected by the conflict resolver σ,

the action at = π(st) ∈ A of the task process Υ is adjusted in a way that reflects

that optimal parameter. Notice that the task process Υ operates on course-grained

time steps t ∈ H while each safety process θi ∈ Θ operates on fine-grained time steps

t̄ ∈ H̄ as the actions performed by the task process can continually be adjusted by

the parameters recommended by the safety processes.

134

The actions of the task process and the parameters of the safety processes are

tightly integrated. In particular, a safety metareasoning system must send an action

and a parameter to a motion planner that computes motor commands that reflect

performing the action subject to the constraints imposed by the parameter. Suppose

that a planetary rover performs the North action with the (⇓,⇐) parameter for

slowing down and shifting left. Here, the planetary rover must send the North

action and the (⇓,⇐) parameter to the motion planner that must compute motor

commands that move the planetary rover north subject to the constraints of slowing

down and swerving left. Formally, an action a ∈ A of a task process can be viewed

as a parameterized action a[p̄] ∈ A given a parameter p̄ ∈ P̄ of the safety processes.

In the following sections, we describe two main algorithms required by a safety

metareasoning system. First, the recommendation algorithm generates a matrix that

is used to construct the rating for each state of a safety process. Second, the arbi-

tration algorithm implements the conflict resolver that selects the optimal parameter

across all safety processes. We now describe both algorithms in detail below.

6.2.4.1 Recommendation Algorithm

The recommendation algorithm in Algorithm 4 generates a matrix that is used to

construct the rating for each state of a safety process (between the blue and purple

objects in Figure 6.2). In particular, given a safety process, the recommendation

algorithm generates multiple values that are discussed in the prior section for every

state-parameter pair of the safety process: the expected discounted frequency of each

severity level incurred and the expected discounted cumulative interference incurred

when using a parameter in a state for each state and parameter of that safety process.

The basis for computing these values involves—for each severity level in the order of

decreasing severity level followed by the interference—performing |L| + 1 executions

135

Algorithm 4: The recommendation algorithm for a safety process.

Input: The safety process θ = 〈S̄, P̄ , T̄ , φ, ψ〉
Output: The matrix ρθ that is used to construct the rating ρθs̄ for each state

s̄ ∈ S̄ of the safety process θ

1 for `→ L,L− 1, . . . , 1 do
2 Φθ[`]← 0S̄×P̄

3 Ψθ ← 0S̄×P̄

4 Λ← ∅
5 for `→ L,L− 1, . . . , 1 do
6 κ(s̄) := [φ(s̄) = `]
7 Φθ[`]←ModifiedValueIteration(θ, κ,Λ)

8 for s̄ in S̄ do
9 α← minp̄∈P̄ Φθ

s̄,p̄[`]

10 for p̄ in P̄ do
11 if Φθ

s̄,p̄[`] > α then
12 Λ← Λ ∪ (s̄, p̄)

13 κ(p̄) := ψ(p̄)
14 Ψθ ←ModifiedValueIteration(θ, κ,Λ)

15 return ρθ =
[
Φθ[1],Φθ[2], . . . ,Φθ[L],Ψθ

]
of modified value iteration that operates on a space of states and parameters with a

cost function in place of a space of states and actions with a reward function.

At a high level, the recommendation algorithm executes modified value iteration

for each severity level in the order of decreasing severity level followed by the inter-

ference to satisfy the lexicographic objective function. Generally, as we will describe

later this section, this algorithm performs two steps. First, it executes modified value

iteration for each severity level in the order of decreasing severity level. Second, it

executes modified value iteration solely for the interference. Across every execution of

modified value iteration, the algorithm keeps a set of state-parameter pairs that vio-

late the lexicographic objective function, which grows with each execution of modified

value iteration. This set of violating state-parameter pairs is thereby used in each

execution of modified value iteration to ignore—for each state—any parameter worse

136

than the optimal parameter in the prior executions of modified value iteration. The

final output of the recommendation algorithm is a matrix that is used to construct

the rating for each state of the safety process. Note that this algorithm is performed

offline for each safety process before the operation of the safety metareasoning system.

Algorithm 4 describes the recommendation algorithm. Initially, for each severity

level and the interference, an |S̄| × |P̄ | matrix is initialized (Lines 1-3). The |S̄| × |P̄ |

matrix for each severity level (Lines 5-7) and the interference (Lines 13-14) is then

populated with its corresponding expected discounted values using modified value

iteration that minimizes over states and parameters given a cost function instead of

maximizing over states and actions given a reward function. Observe that the cost

function κ(s̄) is used to compute the expected discounted frequency of each severity

level (Line 6) while the cost function κ(p̄) is used to compute the expected discounted

cumulative interference (Line 13). Finally, the |S̄| × |P̄ | matrix for each severity level

and the interference is stacked into an |S̄| × |P̄ | × (L + 1) matrix (Line 15) that is

used to construct the rating for each state of a safety process.

Most importantly, in order to satisfy the lexicographic objective function, a set

of violating state-parameter pairs is initialized (Line 4). For each severity level, a

state-parameter pair is added to the set of violating state-parameter pairs if that

parameter in that state is worse than the optimal parameter in that state (Lines

8-12). The set of violating state-parameter pairs enables modified value iteration

to forbid every state-parameter pair that did not satisfy the lexicographic objective

function from the previous executions of modified value iteration (Lines 7 and 14).

We provide a sketch that demonstrates the correctness and the worst-case time

complexity of the recommendation algorithm below.

Proposition 2 (Correctness). Algorithm 4 generates a matrix ρθ of the expected dis-

counted frequency Φθ
s̄,p̄[`] of each severity level 1 ≤ ` ≤ L and the expected discounted

137

cumulative interference Ψθ
s̄,p̄ for each state s̄ ∈ S̄ and parameter p̄ ∈ P̄ of a safety

process θ ∈ Θ that satisfies the lexicographic objective function.

Proof Sketch. Observe that there is an execution of a form of value iteration for

each severity level and the interference in the order of the lexicographic objective

function. It is well known that standard value iteration without any set of vio-

lating state-parameter pairs is guaranteed to compute the corresponding expected

discounted values for each severity level and the interference but may not satisfy the

lexicographic objective function. However, by forbidding the set of violating state-

parameter pairs, modified value iteration satisfies the lexicographic objective function.

Thus, Algorithm 4 is correct.

Proposition 3 (Time Complexity). Algorithm 4 exhibits a worst-case time complex-

ity of O((L+ 1)|S̄|2|P̄ |).

Proof Sketch. There are L + 1 executions of value iteration that each have a time

complexity of O(|S̄|2|P̄ |) for a total time complexity of O((L+ 1)|S̄|2|P̄ |).

6.2.4.2 Arbitration Algorithm

The arbitration algorithm in Algorithm 5 implements the conflict resolver that se-

lects the parameter that optimally addresses the safety concern of each safety process

(between the purple and blue objects in Figure 6.2). At a high level, this algorithm

prunes a set of potentially optimal parameters for each severity level in the order of

decreasing severity level followed by the interference to optimize the lexicographic

objective function. That is, this algorithm initializes a set of potentially optimal pa-

rameters that can be recommended by each safety process. Given the ordering of the

lexicographic objective function, the algorithm prunes the set of potentially optimal

parameters in two steps. First, the algorithm prunes the set of potentially optimal

parameters in the order of decreasing severity level based on the expected discounted

frequency of each severity level incurred using a given parameter in a specific state.

138

Algorithm 5: The arbitration algorithm for a conflict resolver.

Input: The ratings ρθi
s̄i

in the current state s̄i ∈ S̄i of the safety processes
θi ∈ Θ

Output: A random optimal parameter p̄ ∈ P̄
1 P̄ ∗ ← P̄

2 for ν → Φ[L],Φ[L− 1], . . . ,Φ[1],Ψ do

3 α← minp̄∈P̄
[

maxθi∈Θ ν
θi
s̄i,p̄

]
4 for p̄ in P̄ ∗ do

5 β ← maxθi∈Θ ν
θi
s̄i,p̄

6 if β > α then
7 P̄ ∗ ← P̄ ∗ \ {p̄}

8 return Random(P̄ ∗)

Second, the algorithm prunes the set of potentially optimal parameters based on the

expected discounted cumulative interference incurred by the safety process using a

given parameter in a specific state. The result is a random optimal parameter that

optimizes the lexicographic objective function. Note that this algorithm is performed

online during the operation of the safety metareasoning system.

Algorithm 5 describes the arbitration algorithm. Initially, a set of potentially

optimal parameters is initialized (Line 1). Each severity level in the order of decreasing

severity level followed by the interference is then processed (Line 2). To optimize

the lexicographic objective function, the set of potentially optimal parameters is then

pruned (Line 3-7). This involves computing the value of the parameter that minimizes

the maximum respective expected discounted value over all safety processes (Line 3).

With the value of this parameter, each parameter that has a maximum respective

expected discounted value greater than that value is pruned (Line 4-7). Finally, a

random optimal parameter that optimally addresses each safety process is selected

(Line 8). This algorithm is performed online during the operation of the system.

We provide a sketch that demonstrates the correctness and the worst-case time

complexity of the arbitration algorithm below.

139

Proposition 4 (Correctness). Algorithm 5 selects a random optimal parameter p̄ ∈ P̄

that optimizes the lexicographic objective function given the ratings ρθi
s̄i

in the current

state s̄i ∈ S̄i of the safety processes θi ∈ Θ.

Proof Sketch. In the order of the lexicographic objective function, any parameter

with a maximum expected discounted frequency greater than the optimal parameter

for each severity level is pruned and any parameter with a maximum discounted

cumulative interference greater than the optimal parameter for the interference is

pruned. Since this optimizes the lexicographic objective function, it follows that any

remaining parameter is optimal. Hence, Algorithm 5 is correct.

Proposition 5 (Time Complexity). Algorithm 5 exhibits a worst-case time complex-

ity of O((L+ 1)|P̄ ||Θ|).

Proof Sketch. There are L severity level pruning steps that each have a time com-

plexity of O(|P̄ ||Θ|) and an interference pruning step that has a time complexity of

O(|P̄ ||Θ|) for a total time complexity of O((L+ 1)|P̄ ||Θ|).

6.3 Planetary Rover Exploration Domain

We turn to an application of safety metareasoning systems to a planetary rover

exploration domain [44] that forms the basis of the experiments used to evaluate our

approach in the next section. Such a domain is relevant because a planetary rover

should address its safety concerns while completing its task without relying on any

human assistance from mission control on Earth that could take hours or even days.

This would not only slow down every mission but also make some missions infeasible.

In this domain, a planetary rover must analyze different points of interest within

a region of a planet while addressing crevices, dust storms, and rough terrain. The

planetary rover has a battery, a rock analyzer, a soil analyzer, and an objective report

for the analysis statuses of all points of interests. Moreover, the planetary rover is

140

within a region of the planet that is composed as a grid where each cell experiences

a type of weather. In each cell, the planetary rover can move north, east, south, or

west and can also reboot its analyzers, charge its battery, analyze its current cell, and

transmit its data back to mission control on Earth to complete its mission. We now

describe the analysis task of the planetary rover in detail below.

The planetary rover has 4 internal components: a battery of a battery level b ∈

B = {0, 1, . . . ,M} where 0 is a discharged battery and M is a charged battery, a

rock analyzer of a health status h1 ∈ H1 = {Nominal,Error}, a soil analyzer of

a health status h2 ∈ H2 = {Nominal,Error}, and an objective report o ∈ O =

{True,False}I with an analysis status True or False for all points of interest I.

The planetary rover is within a region of a planet as an m by n grid where

each cell is at a horizontal location x ∈ X = {1, 2, . . . , n} and a vertical location

y ∈ Y = {1, 2, . . . ,m} with weather of a type w ∈ W = {Light,Dark}.

The planetary rover can perform 4 movement actions in each cell (x, y): it can

move north to a cell (x, y + 1), east to a cell (x + 1, y), south to a cell (x, y − 1), or

west to a cell (x− 1, y) as long as the new horizontal position is between 1 and n and

the new vertical position is between 1 and m.

The planetary rover can perform 4 stationary actions in each cell (x, y): it can

reboot its analyzers to set the health statuses of the rock analyzer h1 and the soil

analyzer h2 to Nominal, charge its battery to the battery level b′ = (b+ 2) if the cell

(x, y) has weather of a type w = Light, analyze the cell (x, y) if the health statuses

of the rock analyzer h1 and the soil analyzer h2 are set to Nominal, and transmit its

data to complete the mission if the objective report is o = {True}I with an analysis

status True for all points of interest I.

Importantly, to incorporate battery management, all actions discharge the battery

to a battery level b′ = (b− 1) and requires the battery to be at a battery level b > 0.

141

6.3.1 Task Process

We consider the task process Υ designed to complete the analysis task of the

planetary rover that is represented by an MDP Υ = 〈S,A, T,R〉. The set of states

S = X×Y ×B×H1×H2×O crosses a set of horizontal positions X, a set of vertical

positions Y , a set of battery levels B, a set of rock analyzer health statuses H1, a

set of soil analyzer health statuses H2, and a set of objective reports O. The set of

actions A = {↑,→, ↓,←,	,⊕,�,�} contains the north action ↑, the east action →,

the south action ↓ , the west action ←, the reboot action 	, the charge action ⊕,

the analyze action �, and the transmit action �. The transition function T and the

reward function R are designed for the analysis task of the task process Υ.

6.3.2 Safety Processes

We consider each safety process, θ = 〈S̄, P̄ , T̄ , φ, ψ〉 ∈ Θ, designed to address a

safety concern of the planetary rover. Intuitively, each safety process has information

about its safety concern and can adjust the action performed by the task process by

changing its wheel rotation rate (i.e., speed) and its steering (i.e., direction).

Formally, each safety process θ ∈ Θ has a different set of states S̄θ that describe

the safety concern but uses the same set of parameters P̄ = P̄1 × P̄2 with parameter

factors P̄1 and P̄2: the wheel rotation rate parameter factor P̄1 = {∅,⇓,⇑,♦} such

that the value ⇓ decreases the wheel rotation rate, the value ⇑ increases the wheel

rotation rate, and the value ♦ stops the wheel rotation rate and the steering parameter

factor P̄2 = {∅,⇐,⇒} such that the value ⇐ shifts the planetary rover to the left

and the value ⇒ shifts the planetary rover to the right (with the ∅ symbol that

indicates no adjustment in both parameter factors). The transition function T̄θ, the

severity function φθ, and the interference function ψθ are designed to address the

specific safety concern of each safety process θ ∈ Θ. We describe the crevice safety

process, the dust storm safety process, and the rough terrain safety process below.

142

6.3.2.1 Crevices

The crevice safety process, θc = 〈S̄c, P̄ , T̄c, φc, ψc〉, monitors for crevices to pre-

vent the planetary rover from inhibiting the movement of its wheels. The set of states

S̄c = F 1
c ×F 2

c ×F 3
c ×F 4

c crosses the horizontal rover position relative to the crevice F 1
c =

{None,Approaching,At}, the vertical rover position relative to the crevice F 2
c =

{None,Left,Center,Right}, the rover speed F 3
c = {None,Low,Normal,High},

and the rover offset relative to its normal path F 4
c = {Left,Center,Right}. The

transition function T̄c reflects the dynamics between a state s̄ ∈ S̄c, a parameter

p̄ ∈ P̄c, and a successor state s̄′ ∈ S̄c, the severity function φc indicates the severity of

a crevice in a state s̄ ∈ S̄c, and the interference function ψc represents the interference

of a parameter p̄ ∈ P̄c on an action a ∈ A performed by the task process. These three

attributes are designed to enable the crevice safety process to avoid navigating into

crevices that inhibit the movement of the wheels of the planetary rover.

6.3.2.2 Dust Storms

The dust storm safety process, θd = 〈S̄d, P̄ , T̄d, φd, ψd〉, monitors for dust storms

to prevent the planetary rover from damaging its sensitive sensors. The set of states

S̄d = F 1
d ×F 2

d crosses the dust storm density F 1
d = {1, 2, . . . , J} with a limit J and the

rover mode F 2
d = {IsAwake, IsSleeping}. The transition function T̄d reflects the

dynamics between a state s̄ ∈ S̄d, a parameter p̄ ∈ P̄d, and a successor state s̄′ ∈ S̄d,

the severity function φd indicates the severity of the dust storm in a state s̄ ∈ S̄d, and

the interference function ψd represents the interference of a parameter p̄ ∈ P̄d on an

action a ∈ A performed by the task process. These three attributes are designed to

enable the dust storm safety process to avoid damaging the sensitive sensors of the

planetary rover.

143

6.3.2.3 Rough Terrain

The rough terrain safety process, θr = 〈S̄r, P̄ , T̄r, φr, ψr〉, monitors for rough ter-

rain to prevent the planetary rover from damaging its wheels. The set of states

S̄r = F 1
r × F 2

r × F 3
r crosses the horizontal rover position relative to the crevice F 1

r =

{None,Approaching,At}, the rover speed F 2
r = {None,Low,Normal,High},

and the terrain roughness F 3
r = {1, 2, . . . , K} with a limit K. The transition function

T̄r reflects the dynamics between a state s̄ ∈ S̄r, a parameter p̄ ∈ P̄r, and a successor

state s̄′ ∈ S̄r, the severity function φr indicates the severity of the rough terrain in a

state s̄ ∈ S̄r, and the interference function ψr represents the interference of a param-

eter p̄ ∈ P̄r on an action a ∈ A performed by the task process. These three attributes

are designed to enable the rough terrain safety process to avoid damaging the wheels

of the planetary rover.

6.4 Demonstration

In this section, we demonstrate that the application of safety metareasoning sys-

tems to the planetary rover exploration domain is effective in simulation. In particu-

lar, we compare a standard planetary rover to different safety metareasoning planetary

rovers. The standard planetary rover r0 does not have any safety metareasoning while

each safety metareasoning planetary rover ri>0 has a growing set of safety processes:

Θr0 = {}, Θr1 = {θc}, Θr2 = {θc, θd}, and Θr3 = {θc, θd, θr}.

Each planetary rover must complete the analysis task while addressing crevices,

dust storms, and rough terrain that occur stochastically either in isolation or simul-

taneously during 50 simulations. For the analysis task, the internal components

of the planetary rover begin with a battery level b = M = 10, health statuses

h1 = h2 = Nominal, and an objective report o = (False,False) while the re-

gion of the planet has |I| = 2 points of interest in an n = 10 by m = 10 grid such

that each cell has weather of a type w = Light with 0.8 probability or w = Dark

144

r0 r1 r2 r3
1

100

Se
ve

ri
ty

L
ev

el
`

=
5

Fr
eq

ue
nc

y Crevices
Dust Storms
Rough Terrain

(a) Severity Level ` = 5

r0 r1 r2 r3
1

100

Se
ve

ri
ty

L
ev

el
`

=
4

Fr
eq

ue
nc

y Crevices
Dust Storms
Rough Terrain

(b) Severity Level ` = 4

r0 r1 r2 r3
1

100

Se
ve

ri
ty

L
ev

el
`

=
3

Fr
eq

ue
nc

y Crevices
Dust Storms
Rough Terrain

(c) Severity Level ` = 3

r0 r1 r2 r3
1

100

Se
ve

ri
ty

L
ev

el
`

=
2

Fr
eq

ue
nc

y Crevices
Dust Storms
Rough Terrain

(d) Severity Level ` = 2

r0 r1 r2 r3
1

6K

Se
ve

ri
ty

L
ev

el
`

=
1

Fr
eq

ue
nc

y Crevices
Dust Storms
Rough Terrain

(e) Severity Level ` = 1

r0 r1 r2 r3
1

2K

C
um

ul
at

iv
e

In
te

rf
er

en
ce

[s
ec

] Crevices
Dust Storms
Rough Terrain

(f) Interference

Figure 6.3: The performance of each planetary rover for the severity levels and the
interference starting with no safety processes and ending with all safety processes.

with 0.2 probability. For dust storms, the dust storm density limit is J = 10. For

rough terrain, the terrain roughness limit is K = 10.

6.5 Discussion

Figure 6.3 shows that our approach is effective in simulation. Note that Figures

6.3a to 6.3d have a limit of 100 as unsafe operation is rare, Figure 6.3e has a limit of

6000 as safe operation is common, and Figure 6.3f has a limit of 2000. In Figure 6.3a

and 6.3e, at the highest and lowest severity levels, the severity level 5 frequency

decreases while the severity level 1 frequency increases from r0 to r3 as expected.

In Figures 6.3b, 6.3c, and 6.3d, at the middle severity levels, the severity level 4, 3,

and 2 frequencies remain roughly equal or decrease from r0 to r2 but then increase

at r3. This is because the severity level 4, 3, and 2 frequencies for crevices and

145

`= 5 `= 4 `= 3 `= 2 `= 1
0.0
0.2
0.4
0.6
0.8
1.0

Pr
(`

) No Metareasoning Objective[Simple] Objective[Lexicographic]

(a) No safety concern or isolated crevices, dust storms, and rough terrain.

`= 5 `= 4 `= 3 `= 2 `= 1
0.0
0.2
0.4
0.6
0.8
1.0

Pr
(`

) No Metareasoning Objective[Simple] Objective[Lexicographic]

(b) Occurrences of simultaneous crevices and dust storms.

`= 5 `= 4 `= 3 `= 2 `= 1
0.0
0.2
0.4
0.6
0.8
1.0

Pr
(`

) No Metareasoning Objective[Simple] Objective[Lexicographic]

(c) Occurrences of simultaneous crevices and rough terrain.

`= 5 `= 4 `= 3 `= 2 `= 1
0.0
0.2
0.4
0.6
0.8
1.0

Pr
(`

) No Metareasoning Objective[Simple] Objective[Lexicographic]

(d) Occurrences of simultaneous dust storms and rough terrain.

`= 5 `= 4 `= 3 `= 2 `= 1
0.0
0.2
0.4
0.6
0.8
1.0

Pr
(`

) No Metareasoning Objective[Simple] Objective[Lexicographic]

(e) Occurrences of simultaneous crevices, dust storms, and rough terrain.

Figure 6.4: The severity level probability distributions for different combinations of
safety concerns across every simulation.

dust storms must increase to decrease the severity level 5 frequency for rough terrain

because a lower severity level is strictly preferred to a higher severity level due to the

lexicographic objective function. In Figure 6.3f, the cumulative interference increases

from r0 to r3 as expected. This is because the interference must increase to shift the

severity level frequencies from the severity level 5 to the severity level 1 but only as

146

Capabilities Size[Naive] Size[Proposed] Overhead[Proposed] (s)

Analysis Task 16000 16000 4.23× 10−7 ± 1.75× 10−8

+ Crevices + 2288000 + 144 6.63× 10−5 ± 2.53× 10−7

+ Dust Storms + 43776000 + 20 7.97× 10−5 ± 1.16× 10−7

+ Rough Terrain + 5483520000 + 120 1.08× 10−4 ± 2.87× 10−7

Table 6.1: A comparison of a naive approach and our approach to safety.

much as necessary due to the lexicographic objective function. Overall, the system

optimizes the severity of its safety concerns and the interference to its task.

Figure 6.4 compares our approach with the lexicographic objective function to a

simple objective function for arbitration. The simple objective function always ad-

dresses safety concerns both sequentially and independently: that is, it first addresses

a crevice (if any), then a dust storm (if any), and finally rough terrain (if any) without

reasoning about how addressing one safety concern could impact other safety concerns

or how addressing multiple safety concerns could be performed simultaneously. Typ-

ically, for each figure, the lexicographic objective function (Objective[Lexicographic])

exhibits a severity level probability distribution that encourages low severity levels

but discourages high severity levels compared to the simple objective function (Ob-

jective[Simple]). Note that we use a baseline approach that has no metareasoning to

evaluate the lexicographic objective function and the simple objective function.

Table 6.1 compares our proposed approach to a naive approach that would use a

monolithic MDP with every feature of the analysis task and each safety process. How-

ever, note that the naive approach is intractable to design and solve given the complex-

ity of its state space and action space. Generally, as the agent becomes capable of ad-

dressing each safety concern by including the set of states for each safety process, the

naive approach grows multiplicatively (Size[Naive]) while our approach grows addi-

tively (Size[Proposed]) with negligible overhead for arbitration (Overhead[Proposed])

with the set of states for each safety process (Capabilities).

147

6.6 Summary

This chapter introduces a metareasoning approach to safety. A safety metareason-

ing system executes in parallel a task process that completes a specified task and a set

of safety processes that each address a specified safety concern with a conflict resolver

for arbitration by using probabilistic planning. By decoupling an autonomous system

into a task process and a set of safety processes, our approach provides a framework

for autonomous systems to complete a task while addressing safety concerns in a way

that avoids a monolithic decision-making model that is often not only intractable but

also infeasible to build correctly. In our experiments, we show that an application of a

safety metareasoning system to planetary rover exploration is effective in simulation.

148

CHAPTER 7

CONCLUSION

7.1 Summary of Contributions

The primary objective of this thesis has been to introduce principled metareason-

ing for monitoring and controlling the planning processes and the execution processes

of an autonomous system in order for it to operate more effectively in the real world.

To do this, we proposed four different forms of metareasoning in autonomous systems

that led to not only more effective meta-level control for planning but also expanded

the scope of meta-level control to execution. This has resulted in four metareasoning

approaches that enable an autonomous system to (1) determine when to interrupt an

anytime algorithm and act on the current solution, (2) adjust the hyperparameters of

an adjustable algorithm at runtime, (3) detect, identify, and recover from exceptions

during operation, and (4) maintain and restore safety during operation. For each

approach, we demonstrated that it outperformed standard techniques on a number

of common benchmark domains and applications, including autonomous driving and

planetary rover exploration. Overall, this thesis highlights that metareasoning is a

robust framework for boosting the efficiency and reliability of the decision making of

autonomous systems in a way that goes beyond prevailing work. We summarize the

contributions of this thesis below.

7.1.1 Metareasoning for Stopping

Chapter 3 introduced two metareasoning approaches to stopping of anytime al-

gorithms. For the model-based approach, we first developed an online performance

149

prediction framework that can be used by a meta-level control technique to predict

the performance of an anytime algorithm. We then built a model-based meta-level

control technique that determines the optimal stopping point by using the online per-

formance prediction framework. For the model-free approach, we first developed a

formal MDP representation of the meta-level control problem for anytime algorithms

that can be used to learn the optimal stopping point of an anytime algorithm with

reinforcement learning. We then built a model-free meta-level control technique that

learns the optimal stopping point by using the formal MDP representation of the

meta-level control problem for anytime algorithms. Finally, we showed that both ap-

proaches outperform existing meta-level control techniques that require substantial

offline work on several common benchmark domains and a mobile robot domain.

7.1.2 Metareasoning for Hyperparameter Tuning

Chapter 4 introduced a metareasoning approach to hyperparameter tuning of ad-

justable algorithms. First, we developed a formal generalization of an anytime al-

gorithm called an adjustable algorithm that can be interrupted at any time for its

current solution with hyperparameters that can be tuned at runtime. Next, we built

a meta-level control technique that monitors and controls an adjustable algorithm

by using deep reinforcement learning to learn optimal stopping and optimal hyper-

parameter tuning. Finally, we showed that our approach boosts overall performance

on a common benchmark domain that uses anytime weighted A* to solve a range of

heuristic search problems and a mobile robot application that uses RRT* to solve

motion planning problems.

7.1.3 Metareasoning for Exception Recovery

Chapter 5 introduced a metareasoning approach to exception recovery : an ex-

ception recovery metareasoning system interleaves a regular process with a set of

exception handlers to detect, identify, and handle exceptions by using belief space

150

planning. First, we developed a formal definition of an exception recovery metar-

easoning system and its key properties. Next, we offered a framework for profiling

decision processes for the main decision process and each exception handler. Finally,

we showed that an application of an exception recovery metareasoning system to

autonomous driving is effective in simulation and on a fully operational prototype.

7.1.4 Metareasoning for Safety

Chapter 6 introduced a metareasoning approach to safety : a safety metareasoning

system executes in parallel a task process that completes a specified task and a set of

safety processes that each address a specified safety concern with a conflict resolver

for arbitration by using probabilistic planning. First, we developed a formal definition

of a safety metareasoning system and its key attributes. Next, we offered a formal

definition of a safety metareasoning system as well as a recommendation algorithm for

a safety process and an arbitration algorithm for a conflict resolver with a theoretical

analysis of the correctness and worst-case time-complexity for each algorithm. Finally,

we showed that an application of a safety metareasoning system to planetary rover

exploration is effective in simulation.

7.2 Future Work

There are many promising areas of future work. We discuss several areas of future

work in metareasoning for planning and metareasoning for execution below.

7.2.1 Metareasoning for Planning

Our work on metareasoning for planning has focused on monitoring and control-

ling a single algorithm. It is possible, however, to use metareasoning for monitoring

and controlling multiple algorithms at once. Existing work has generally focused on

algorithm selection methods that chooses the best algorithm to solve a specific in-

stance of a problem among a set of algorithms [85] and algorithm portfolio methods

151

that execute a set of algorithms in parallel by assigning different allocations of com-

putation time to each algorithm [69, 109]. However, while these methods have been

effective for general algorithms, they have not typically taken advantage of the main

property of anytime algorithms. An interesting line of work could therefore focus on

developing methods that solve a specific instance of a problem by executing multiple

anytime algorithms in sequence that each share an intermediate solution representa-

tion. Intuitively, once the current anytime algorithm reaches a point of diminishing

returns along its performance curve, it would pass its current intermediate solution to

another anytime algorithm within the portfolio of anytime algorithms, which would

perhaps overcome the diminishing returns of the current anytime algorithm. Overall,

the goal of this line of work would be to compute solutions of better quality in less

computation time by executing multiple anytime algorithms in sequence.

Our work on metareasoning for hyperparameter tuning can also be extended in

several ways. First, while we offered a preliminary analysis of the meta-level control

problem for monitoring and controlling anytime weighted A* and RRT*, there is

further optimization and exploration that could be performed to find the best meta-

level control problem for each algorithm. For example, the states of computation could

include more informative features while the actions of computation could include more

useful hyperparameters in order to produce more effective meta-level control. Next,

although we conducted an initial exploration of how our approach chooses to adjust

the hyperparameters of anytime weighted A* and RRT* that intuitively explains

the boost in their overall performance, there is further experimentation that could be

performed to better understand its choices. Finally, since our experiments employ the

standard implementations of anytime weighted A* and RRT*, it would be beneficial

to examine more sophisticated versions of each algorithm while also applying our

approach to different classes of algorithms that are popular throughout planning and

152

robotics. Needless to say, there are many extensions of our work on metareasoning

for hyperparameter tuning that have not been investigated yet.

7.2.2 Metareasoning for Execution

Our work on metareasoning for both exception recovery and safety can be ex-

panded in several ways. First, our approaches could be applied to a variety of do-

mains, such as package delivery, physical therapy, and household assistance. This

would demonstrate the generality of each approach and the challenges of applying

them to different classes of domains. Next, our approaches could employ more so-

phisticated general-purpose exception handlers and safety processes that could be

used in a range of different tasks that are common in planning and robotics. This

would highlight that each approach can go beyond the preliminary exception handlers

and safety processes considered in this thesis that have been simplified in the interest

of clarity. Finally, for both approaches, it is possible to perform a deeper theoretical

analysis of their assumptions and their guarantees for exception recovery or safety in

different classes of domains. Overall, there is a seemingly endless amount of work that

could be done to further develop metareasoning for exception recovery and safety.

7.2.3 Integrating Planning and Execution

This thesis proposes a two-pronged metareasoning framework with a planning

module and an execution module. However, the communication between each module

poses many interesting research questions surrounding how the modules could inform

each other of their progress and problems. On the one hand, if the planning module

computes a plan of low solution quality despite determining when to interrupt and

how to tune the hyperparameters of its planning processes, this could indicate to the

execution module that its execution processes may encounter more exceptions and

safety concerns than usual. On the other hand, if the execution module observes that

its execution processes continue to encounter more exceptions and safety concerns

153

than usual, this could indicate to the planning module that it may need to monitor

and control its planning processes in a different way. Developing a formal way of

integrating the planning module and the execution module is an important area of

research that we have not given attention to in this thesis.

7.3 Final Thoughts

Throughout this thesis, we have shown that metareasoning can be a powerful ap-

proach to building autonomous systems that are required to operate in noisy, stochas-

tic, unstructured domains for long periods of time. In particular, we have shown

that metareasoning can enable autonomous systems to optimize their own planning

processes and their own execution processes for more efficient and reliable decision

making. To this end, we have applied metareasoning to an array of algorithms and

applications, including heuristic search, motion planning, genetic algorithms, simulat-

ing annealing, path planning, autonomous driving, and planetary rover exploration.

Most importantly, the main objective of this thesis has been to demonstrate to re-

searchers and practitioners in planning and robotics that many challenging research

questions that arise during the design, development, and deployment of autonomous

systems in the real world can be answered using metareasoning. Finally, while this

thesis represents only a small contribution to building general-purpose autonomous

systems with efficient and reliable decision making, we hope that researchers and

practitioners find value in the main ideas that have been presented here.

154

BIBLIOGRAPHY

[1] Adenso-Diaz, Belarmino, and Laguna, Manuel. Fine-tuning of algorithms using
fractional experimental designs and local search. Operations Research 54, 1
(2006), 99–114.

[2] Agrawal, Ravi, Wright, Timothy J., Samuel, Siby, Zilberstein, Shlomo, and
Fisher, Donald L. Effects of a change in environment on the minimum time
to situation awareness in transfer of control scenarios. Transportation Research
Record: Journal of the Transportation Research Board 2663, 16 (2017), 126–133.

[3] Aine, Sandip, Chakrabarti, PP, and Kumar, Rajeev. AWA∗: A window con-
strained anytime heuristic search algorithm. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (2007), pp. 2250–2255.

[4] Akgun, Baris, and Stilman, Mike. Sampling heuristics for optimal motion plan-
ning in high dimensions. In Proceedings of the International Conference on
Intelligent Robots and Systems (2011), IEEE.

[5] Alexander, George, Raja, Anita, and Musliner, David J. Controlling delibera-
tion in coordinators. In Metareasoning: Thinking about Thinking, M. Cox and
A. Raja, Eds. MIT Press, Cambridge, MA, USA, 2011.

[6] Alterovitz, Ron, Koenig, Sven, and Likhachev, Maxim. Robot planning in the
real world. AI Magazine (2016).

[7] Amodei, Dario, Olah, Chris, Steinhardt, Jacob, Christiano, Paul, Schulman,
John, and Mané, Dan. Concrete problems in AI safety. arXiv preprint
arXiv:1606.06565 (2016).

[8] Anderson, Michael L, Oates, Tim, Chong, Waiyian, and Perlis, Don. The
metacognitive loop: Enhancing reinforcement learning with metacognitive mon-
itoring and control for improved perturbation tolerance. Journal of Experimen-
tal and Theoretical Artificial Intelligence 18, 3 (2006), 387–411.

[9] Anderson, Michael L, and Perlis, Donald R. Logic, self-awareness and self-
improvement: The metacognitive loop and the problem of brittleness. Journal
of Logic and Computation 15, 1 (2005), 21–40.

[10] Ansótegui, Carlos, Sellmann, Meinolf, and Tierney, Kevin. A gender-based ge-
netic algorithm for the automatic configuration of algorithms. In Proceedings of
the Fifteenth International Conference on Principles and Practice of Constraint
Programming (2009), Springer, pp. 142–157.

155

[11] Arcos, Josep LLúıs, Mülâyim, Oguz, and Leake, David B. Using introspective
reasoning to improve CBR system performance. In Metareasoning: Thinking
about Thinking, M. Cox and A. Raja, Eds. MIT Press, Cambridge, MA, USA,
2011.

[12] Arkin, Ronald C. Governing lethal behavior: Embedding ethics in a hybrid de-
liberative/reactive robot architecture. In Proceedings of the Third ACM/IEEE
International Conference on Human-Robot Interaction (2008).

[13] Barto, Andrew G., and Mahadevan, Sridhar. Recent advances in hierarchical
reinforcement learning. Discrete Event Dynamic Systems (2003).

[14] Bartz-Beielstein, Thomas, Lasarczyk, Christian WG, and Preuss, Mike. Se-
quential parameter optimization. In Proceedings of the IEEE Congress on Evo-
lutionary Computation (2005), vol. 1, IEEE, pp. 773–780.

[15] Bartz-Beielstein, Thomas, and Markon, Sandor. Tuning search algorithms for
real-world applications: A regression tree based approach. In Proceedings of the
IEEE Congress on Evolutionary Computation (2004), pp. 1111–1118.

[16] Basich, Connor, Svegliato, Justin, Beach, Allyson, Zilberstein, Shlomo, Wray,
Kyle Hollins, and Witwicki, Stefan J. Improving competence via iterative state
space refinement. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (2021).

[17] Basich, Connor, Svegliato, Justin, Wray, Kyle Hollins, Witwicki, Stefan,
Biswas, Joydeep, and Zilberstein, Shlomo. Learning to optimize autonomy
in competence-aware systems. In Proceedings of the Nineteenth International
Conference on Autonomous Agents and Multiagent Systems (2020).

[18] Basich, Connor, Svegliato, Justin, Zilberstein, Shlomo, Wray, Kyle Hollins, and
Witwicki, Stefan J. Improving competence for reliable autonomy. In Proceedings
of the ECAI Workshop on Agents and Robots for Reliable Engineered Autonomy
(2020).

[19] Belghith, Khaled, Kabanza, Froduald, Hartman, Leo, and Nkambou, Roger.
Anytime dynamic path-planning with flexible probabilistic roadmaps. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(2006), IEEE, pp. 2372–2377.

[20] Bellman, Richard. Dynamic programming. Science (1966).

[21] Bertsekas, Dimitri P, and Tsitsiklis, John N. An analysis of stochastic shortest
path problems. Mathematics of Operations Research 16, 3 (1991).

[22] Bhatia, Abhinav, Svegliato, Justin, and Zilberstein, Shlomo. On the benefits
of randomly adjusting anytime weighted A*. In Proceedings of the Fourteenth
Symposium on Combinatorial Search (2021).

156

[23] Bhatia, Abhinav, Svegliato, Justin, and Zilberstein, Shlomo. Tuning the hy-
perparameters of anytime planning: A deep reinforcement learning approach.
In Proceedings of the ICAPS Workshop on Heuristics and Search for Domain-
Independent Planning (2021).

[24] Bierwirth, Christian. A generalized permutation approach to job shop schedul-
ing with genetic algorithms. Operations Research Spectrum 17, 2-3 (1995),
87–92.

[25] Birattari, Mauro, Stützle, Thomas, Paquete, Luis, and Varrentrapp, Klaus. A
racing algorithm for configuring metaheuristics. In Proceedings of the Fourth
Genetic and Evolutionary Computation Conference (2002), vol. 2.

[26] Birattari, Mauro, Yuan, Zhi, Balaprakash, Prasanna, and Stützle, Thomas. F-
race and iterated F-race: An overview. Experimental Methods for the Analysis
of Optimization Algorithms (2010), 311–336.

[27] Boddy, Mark, and Dean, Thomas L. Deliberation scheduling for problem solving
in time-constrained environments. Artificial Intelligence 67, 2 (1994), 245–285.

[28] Breese, John S., and Horvitz, Eric J. Ideal reformulation of belief networks.
In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence
(1991), pp. 129–143.

[29] Burkard, Rainer E., Karisch, Stefan E., and Rendl, Franz. QAPLIB–A
quadratic assignment problem library. Journal of Global Optimization 10, 4
(1997), 391–403.

[30] Burns, Ethan, Ruml, Wheeler, and Do, Minh Binh. Heuristic search when time
matters. Journal of Artificial Intelligence Research 47 (2013), 697–740.

[31] Casper, Jennifer, and Murphy, Robin R. Human-robot interactions during the
robot-assisted urban search and rescue response at the World Trade Center.
IEEE Transactions on Systems, Man, and Cybernetics 33, 3 (2003).

[32] Cassandra, Anthony, Littman, Michael L., and Zhang, Nevin L. Incremental
pruning: A simple, fast, exact method for partially observable Markov deci-
sion processes. In Proceedings of the Thirteenth Conference on Uncertainty in
Artificial Intelligence (1997), Morgan Kaufmann Publishers Inc.

[33] Chen, Sheng-Lei, and Wei, Yan-Mei. Least-squares SARSA(Lambda) algo-
rithms for reinforcement learning. In Proceedings of the Fourth International
Conference on Natural Computation (2008), pp. 632–636.

[34] Cox, Michael, Alavi, Zohreh, Dannenhauer, Dustin, Eyorokon, Vahid, Munoz-
Avila, Hector, and Perlis, Don. MIDCA: A metacognitive, integrated dual-cycle
architecture for self-regulated autonomy. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence (2016), vol. 30.

157

[35] Cserna, Bence, Ruml, Wheeler, and Frank, Jeremy. Planning time to think:
Metareasoning for on-line planning with durative actions. In Proceedings of the
Twenty-Seventh International Conference on Automated Planning and Schedul-
ing (2017).

[36] Davis, Lawrence. Job shop scheduling with genetic algorithms. In Proceedings of
the First International Conference on Genetic Algorithms (1985), pp. 136–140.

[37] Dean, Thomas L., and Boddy, Mark S. An analysis of time-dependent plan-
ning. In Proceedings of the Seventh AAAI National Conference on Artificial
Intelligence (1988), pp. 49–54.

[38] Dearden, Richard, Willeke, Thomas, Simmons, Reid, Verma, Vandi, Hutter,
Frank, and Thrun, Sebastian. Real-time fault detection and situational aware-
ness for rovers: Report on the mars technology program task. In Proceedings
of the IEEE Aerospace Conference (2004), vol. 2, IEEE, pp. 826–840.

[39] Della Croce, Federico, Tadei, Roberto, and Volta, Giuseppe. A genetic algo-
rithm for the job shop problem. Computers & Operations Research 22, 1 (1995),
15–24.

[40] Dietterich, Thomas G. Ensemble methods in machine learning. In Proceedings of
the First International Workshop on Multiple Classifier Systems (2000), pp. 1–
15.

[41] Epstein, Susan L, and Petrovic, Smiljana. Learning expertise with bounded
rationality and self-awareness. In Metareasoning: Thinking about Thinking,
M. Cox and A. Raja, Eds. MIT Press, Cambridge, MA, USA, 2011.

[42] Fern, Alan, and Givan, Robert. Online ensemble learning: An empirical study.
Machine Learning 53, 1-2 (2003), 71–109.

[43] Ferrando, Angelo, Dennis, Louise A., Ancona, Davide, Fisher, Michael, and
Mascardi, Viviana. Recognising assumption violations in autonomous systems
verification. In Proceedings of the Seventeenth International Conference on Au-
tonomous Agents and Multiagent Systems (Richland, SC, 2018), International
Foundation for Autonomous Agents and Multiagent Systems, pp. 1933–1935.

[44] Geißer, Florian, Speck, David, and Keller, Thomas. An analysis of the proba-
bilistic track of the ipc 2018. In Proceedings of the ICAPS 2019 Workshop on
the International Planning Competition (2019), pp. 27–35.

[45] Gigerenzer, Gerd. Adaptive Thinking: Rationality in the Real World. Oxford
University Press, Oxford, UK, 2000.

[46] Gigerenzer, Gerd, and Todd, Peter M. Simple Heuristics That Make Us Smart.
Oxford University Press, Oxford, UK, 1999.

158

[47] Gilmore, Paul C. Optimal and suboptimal algorithms for the quadratic assign-
ment problem. Journal of the Society for Industrial and Applied Mathematics
10, 2 (1962), 305–313.

[48] Goel, Ashok K, and Jones, Joshua. Metareasoning for self-adaptation in intelli-
gent agents. In Metareasoning: Thinking about Thinking, M. Cox and A. Raja,
Eds. MIT Press, Cambridge, MA, USA, 2011.

[49] Goel, Puneet, Dedeoglu, Göksel, Roumeliotis, Stergios I, and Sukhatme, Gau-
rav S. Fault detection and identification in a mobile robot using multiple model
estimation and neural network. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (2000), vol. 3, IEEE, pp. 2302–2309.

[50] Gomes, Carla P., and Selman, Bart. Algorithm portfolios. Artificial Intelligence
126, 1-2 (2001), 43–62.

[51] Gomoluch, Pawel, Alrajeh, Dalal, Russo, Alessandra, and Bucchiarone, Anto-
nio. Learning neural search policies for classical planning. In Proceedings of
the International Conference on Automated Planning and Scheduling (2020),
vol. 30, pp. 522–530.

[52] Good, Irving J. Twenty-seven principles of rationality. In Foundations of Sta-
tistical Inference, P. Godambe and D. A. Sprott, Eds. Holt, Rinehart, Winston,
Toronto, Canada, 1971, pp. 108–141.

[53] Goodrich, Michael A., Morse, Bryan S., Gerhardt, Damon, Cooper, Joseph L.,
Quigley, Morgan, Adams, Julie A., and Humphrey, Curtis. Supporting wilder-
ness search and rescue using a camera-equipped mini UAV. Journal of Field
Robotics (2008).

[54] Gu, Rong, Marinescu, Raluca, Seceleanu, Cristina, and Lundqvist, Kristina.
Formal verification of an autonomous wheel loader by model checking. In Pro-
ceedings of the Sixth Conference on Formal Methods in Software Engineering
(New York, NY, USA, 2018), FormaliSE ’18, ACM, pp. 74–83.

[55] Hadfield-Menell, Dylan, Milli, Smitha, Abbeel, Pieter, Russell, Stuart J, and
Dragan, Anca. Inverse reward design. Advances in Neural Information Process-
ing Systems 30 (2017), 6765–6774.

[56] Hadfield-Menell, Dylan, Russell, Stuart J, Abbeel, Pieter, and Dragan, Anca.
Cooperative inverse reinforcement learning. Proceedings of the Thirtieth Con-
ference on Neural Information Processing Systems 29 (2016).

[57] Hansen, Eric A. Indefinite-horizon POMDPs with action-based termination. In
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence
(2007), pp. 1237–1242.

[58] Hansen, Eric A., and Zhou, Rong. Anytime heuristic search. Journal of Artifi-
cial Intelligence Research 28 (2007), 267–297.

159

[59] Hansen, Eric A., and Zilberstein, Shlomo. LAO∗: A heuristic search algorithm
that finds solutions with loops. Artificial Intelligence 129, 1-2 (2001), 35–62.

[60] Hansen, Eric A., and Zilberstein, Shlomo. Monitoring and control of anytime
algorithms: A dynamic programming approach. Artificial Intelligence 126, 1-2
(2001), 139–157.

[61] Hansen, Eric A., Zilberstein, Shlomo, and Danilchenko, Victor A. Anytime
heuristic search: First results. Tech. Rep. 97-50, Computer Science Department,
University of Massachussetts Amherst, 1997.

[62] Hart, Peter E, Nilsson, Nils J, and Raphael, Bertram. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107.

[63] Hay, Nicholas, Russell, Stuart, Tolpin, David, and Shimony, Solomon Eyal. Se-
lecting computations: Theory and applications. arXiv preprint arXiv:1408.2048
(2014).

[64] Horvitz, Eric. Reasoning under varying and uncertain resource constraints. In
Proceedings of the Seventh AAAI National Conference on Artificial Intelligence
(1988), pp. 111–116.

[65] Horvitz, Eric, and Rutledge, Geoffrey. Time-dependent utility and action un-
der uncertainty. In Proceedings of the Seventh Conference on Uncertainty in
Artificial Intelligence (1991), pp. 151–158.

[66] Horvitz, Eric J. Reasoning about beliefs and actions under computational re-
source constraints. In Proceedings of the Third Workshop on Uncertainty in
Artificial Intelligence (1987).

[67] Horvitz, Eric J. Computation and action under bounded resources. PhD thesis,
Stanford University, CA, 1990.

[68] Huang, Ling, Jia, Jinzhu, Yu, Bin, Chun, Byung-Gon, Maniatis, Petros, and
Naik, Mayur. Predicting execution time of computer programs using sparse
polynomial regression. In Proceedings of the Twenty-Fourth Conference on Neu-
ral Information Processing Systems (2010), pp. 883–891.

[69] Huberman, Bernardo A., Lukose, Rajan M., and Hogg, Tad. An economics
approach to hard computational problems. Science 275, 5296 (1997), 51–54.

[70] Hutter, Frank, Hoos, Holger H, and Leyton-Brown, Kevin. Sequential model-
based optimization for general algorithm configuration. In Proceedings of the
Fifth International Conference on Learning and Intelligent Optimization (2011),
Springer, pp. 507–523.

160

[71] Hutter, Frank, Hoos, Holger H, Leyton-Brown, Kevin, and Murphy, Kevin.
Time-bounded sequential parameter optimization. In Proceedings of the Fourth
International Conference on Learning and Intelligent Optimization (2010),
Springer, pp. 281–298.

[72] Hutter, Frank, Hoos, Holger H, Leyton-Brown, Kevin, and Murphy, Kevin P.
An experimental investigation of model-based parameter optimisation: Spo and
beyond. In Proceedings of the Eleventh Annual Conference on Genetic and
Evolutionary Computation (2009), pp. 271–278.

[73] Hutter, Frank, Hoos, Holger H, Leyton-Brown, Kevin, and Stützle, Thomas.
Paramils: An automatic algorithm configuration framework. Journal of Artifi-
cial Intelligence Research 36 (2009), 267–306.

[74] Hutter, Frank, Hoos, Holger H, and Stützle, Thomas. Automatic algorithm
configuration based on local search. In Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence (2007), vol. 7, pp. 1152–1157.

[75] Hutter, Frank, Xu, Lin, Hoos, Holger H., and Leyton-Brown, Kevin. Algorithm
runtime prediction: Methods & evaluation. Artificial Intelligence 206 (2014),
79–111.

[76] Kaelbling, Leslie Pack, Littman, Michael L., and Cassandra, Anthony R. Plan-
ning and acting in partially observable stochastic domains. Journal of Artificial
Intelligence Research (1998).

[77] Karaman, Sertac, Walter, Matthew R., Perez, Alejandro, Frazzoli, Emilio, and
Teller, Seth. Anytime motion planning using the RRT∗. In Proceedings of
the IEEE International Conference on Robotics and Automation (2011), IEEE,
pp. 1478–1483.

[78] Karayev, Sergey, Fritz, Mario, and Darrell, Trevor. Anytime recognition of
objects and scenes. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2014), pp. 572–579.

[79] Kasenberg, Daniel, and Scheutz, Matthias. Norm conflict resolution in stochas-
tic domains. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (2018), vol. 32.

[80] Kiesel, Scott, Burns, Ethan, and Ruml, Wheeler. Abstraction-guided sampling
for motion planning. In Proceedings of the Fifth Annual Symposium on Com-
binatorial Search (2012).

[81] Kim, H.J., Jordan, Michael I., Sastry, Shankar, and Ng, Andrew Y. Au-
tonomous helicopter flight via reinforcement learning. In Proceedings of the
Conference on Neural Information Processing Systems (2004), pp. 799–806.

161

[82] Kolobov, Andrey, Mausam, and Weld, Daniel S. A theory of goal-oriented mdps
with dead ends. In Proceedings of the Twenty-Eighth Conference on Uncertainty
in Artificial Intelligence (2012).

[83] Konidaris, George, Osentoski, Sarah, and Thomas, Philip S. Value function
approximation in reinforcement learning using the Fourier basis. In Proceedings
of the Twenty-Fifth AAAI Conference on Artificial Intelligence (2011), vol. 6,
p. 7.

[84] Kotseruba, Iuliia, and Tsotsos, John K. 40 years of cognitive architectures: Core
cognitive abilities and practical applications. Artificial Intelligence Review 53,
1 (2020), 17–94.

[85] Kotthoff, Lars. Algorithm selection for combinatorial search problems: A sur-
vey. In Data Mining and Constraint Programming. Springer, 2016, pp. 149–190.

[86] Kumar, Akshat, and Zilberstein, Shlomo. Anytime planning for decentralized
POMDPs using expectation maximization. In Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial Intelligence (2010), pp. 294–301.

[87] Kwak, Jun-young, Varakantham, Pradeep, Maheswaran, Rajiv, Tambe, Milind,
Jazizadeh, Farrokh, Kavulya, Geoffrey, Klein, Laura, Becerik-Gerber, Burcin,
Hayes, Timothy, and Wood, Wendy. SAVES: A sustainable multiagent appli-
cation to conserve building energy considering occupants. In Proceedings of
the Eleventh International Conference on Autonomous Agents and Multiagent
Systems (2012), pp. 21–28.

[88] Leike, Jan, Krueger, David, Everitt, Tom, Martic, Miljan, Maini, Vishal, and
Legg, Shane. Scalable agent alignment via reward modeling: A research direc-
tion. arXiv preprint arXiv:1811.07871 (2018).

[89] Leyton-Brown, Kevin, Nudelman, Eugene, Andrew, Galen, McFadden, Jim,
and Shoham, Yoav. Boosting as a metaphor for algorithm design. In Proceedings
of the Ninth International Conference on Principles and Practice of Constraint
Programming (2003), pp. 899–903.

[90] Lieder, Falk, Plunkett, Dillon, Hamrick, Jessica B., Russell, Stuart J., Hay,
Nicholas J., and Griffiths, Thomas L. Algorithm selection by rational metar-
easoning as a model of human strategy. In Proceedings of the Conference on
Neural Information Processing Systems (2014).

[91] Likhachev, Maxim, Gordon, Geoff, and Thrun, Sebastian. ARA*: Anytime A*
with provable bounds on sub-optimality. In Proceedings of the Conference on
Neural Information Processing Systems (2004), pp. 767–774.

[92] Lin, Christopher H, Kolobov, Andrey, Kamar, Ece, and Horvitz, Eric. Metar-
easoning for planning under uncertainty. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (2015).

162

[93] Lin, Shen, and Kernighan, Brian W. An effective heuristic algorithm for the
traveling-salesman problem. Operations Research 21, 2 (1973), 498–516.

[94] Littman, Michael L. The Witness algorithm: Solving partially observable
Markov decision processes. Tech. rep., Brown University, 1994.

[95] Luna, R., Şucan, I. A., Moll, M., and Kavraki, L. E. Anytime solution op-
timization for sampling-based motion planning. In Proceedings of the IEEE
International Conference on Robotics and Automation (2013), pp. 5068–5074.

[96] Maei, Hamid Reza, Szepesvári, Csaba, Bhatnagar, Shalabh, and Sutton,
Richard S. Toward off-policy learning control with function approximation. In
Proceedings of the Twenty-Seventh International Conference on Machine Learn-
ing (2010).

[97] Manne, Alan S. Linear programming and sequential decisions. Management
Science (1960).

[98] Mendoza, Juan Pablo, Veloso, Manuela, and Simmons, Reid. Mobile robot
fault detection based on redundant information statistics. In Proceedings of the
IROS Workshop on Safety in Human-Robot Coexistence and Interaction (2012),
vol. 945, Citeseer, pp. 7–11.

[99] Misevičius, Alfonsas. A modified simulated annealing algorithm for the
quadratic assignment problem. Informatica 14, 4 (2003), 497–514.

[100] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Ve-
ness, Joel, Bellemare, Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland,
Andreas K, Ostrovski, Georg, et al. Human-level control through deep rein-
forcement learning. Nature 518, 7540 (2015), 529.

[101] Murdock, J William, and Goel, Ashok K. Meta-case-based reasoning: Self-
improvement through self-understanding. Journal of Experimental & Theoret-
ical Artificial Intelligence 20, 1 (2008), 1–36.

[102] Nakano, Ryohei, and Yamada, Takeshi. Conventional genetic algorithm for
job shop problems. In Proceedings of the Fourth International Conference on
Genetic Algorithms (1991), pp. 474–479.

[103] Nashed, Samer B, Svegliato, Justin, Brucato, Matteo, Basich, Connor, Grupen,
Roderic A, and Zilberstein, Shlomo. Solving Markov decision processes with
partial state abstractions. In Proceedings of the IEEE International Conference
on Robotics and Automation (2021).

[104] Nashed, Samer B, Svegliato, Justin, and Zilberstein, Shlomo. Ethically com-
pliant planning within moral communities. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society (2021).

163

[105] Otten, Lars, and Dechter, Rina. Anytime and/or depth-first search for combi-
natorial optimization. AI Communications 25, 3 (2012), 211–227.

[106] Parr, Shane, Khatri, Ishan, Svegliato, Justin, and Zilberstein, Shlomo. Agent-
aware state estimation: Effective traffic light classification for autonomous ve-
hicles. In Proceedings of the ICRA Workshop on Sensing, Estimating and Un-
derstanding the Dynamic World (2020).

[107] Parr, Shane, Khatri, Ishan, Svegliato, Justin, and Zilberstein, Shlomo. Agent-
aware state estimation in autonomous vehicles. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (2021).

[108] Paul, C. J., Acharya, Anurag, Black, Bryan, and Strosnider, Jay K. Reduc-
ing problem-solving variance to improve predictability. Communications of the
ACM 34, 8 (1991), 80–93.

[109] Petrik, Marek, and Zilberstein, Shlomo. Learning parallel portfolios of al-
gorithms. Annals of Mathematics and Artificial Intelligence (AMAI) 48, 1-2
(2006), 85–106.

[110] Pineau, Joelle, Gordon, Geoff, and Thrun, Sebastian. Point-based Value Iter-
ation: An anytime algorithm for POMDPs. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (2003), pp. 1025–1032.

[111] Pineda, Luis, Takahashi, Takeshi, Jung, Hee-Tae, Zilberstein, Shlomo, and Gru-
pen, Roderic. Continual planning for search and rescue robots. In Proceedings of
the IEEE-RAS Fifteenth International Conference on Humanoid Robots (Seoul,
Korea, 2015).

[112] Pineda, Luis, and Zilberstein, Shlomo. Planning under uncertainty using re-
duced models: Revisiting determinization. In Proceedings of the Twenty-Fourth
International Conference on Automated Planning and Scheduling (Portsmouth,
New Hampshire, 2014), pp. 217–225.

[113] Pineda, Luis Enrique, and Zilberstein, Shlomo. Probabilistic planning with
reduced models. Journal of Artificial Intelligence Research 65 (2019), 271–306.

[114] Raja, Anita, Alexander, George, Lesser, Victor R, and Krainin, Michael. Coor-
dinating agents’ metalevel control. In Metareasoning: Thinking about Thinking,
M. Cox and A. Raja, Eds. MIT Press, Cambridge, MA, USA, 2011.

[115] Ramos, Fabio Tozeto, and Cozman, Fabio Gagliardi. Anytime anyspace proba-
bilistic inference. International Journal of Approximate Reasoning 38, 1 (2005),
53–80.

[116] Richter, Silvia, Thayer, Jordan Tyler, and Ruml, Wheeler. The joy of forgetting:
Faster anytime search via restarting. In Proceedings of the Twentieth Interna-
tional Conference on Automated Planning and Scheduling (2010), pp. 137–144.

164

[117] Richtsfeld, Andreas, Zillich, Michael, and Vincze, Markus. Anytime perceptual
grouping of 2D features into 3D basic shapes. In Proceedings of the Ninth
International Conference on Computer Vision Systems (2013), pp. 73–82.

[118] Robertson, Paul, and Laddaga, Robert. Metareasoning-based self-adaptive
tracking. In Proceedings of the Fourth IEEE International Conference on Self-
Adaptive and Self-Organizing Systems Workshop (2010), IEEE, pp. 275–281.

[119] Roumeliotis, Stergios I., Sukhatme, Gaurav S., and Bekey, George A. Fault de-
tection and identification in a mobile robot using multiple-model estimation. In
Proceedings of the IEEE International Conference on Automation and Robotics
(1998), vol. 3, IEEE, pp. 2223–2228.

[120] Rubinstein, Zachary B, Smith, Stephen F, and Zimmerman, Terry L. The role of
metareasoning in achieving effective multiagent coordination. In Metareasoning:
Thinking about Thinking, M. Cox and A. Raja, Eds. MIT Press, Cambridge,
MA, USA, 2011.

[121] Russell, Stuart, and Wefald, Eric. Principles of metareasoning. Artificial Intel-
ligence 49 (1991), 361–395.

[122] Russell, Stuart J., Subramanian, Devika, and Parr, Ron. Provably bounded
optimal agents. In Proceedings of the Thirteenth International Joint Conference
on Artificial Intelligence (1993), pp. 338–344.

[123] Russell, Stuart J., and Wefald, Eric H. Do the Right thing: Studies in Limited
Rationality. MIT Press, Cambridge, MA, 1991.

[124] Saisubramanian, Sandhya, Kamar, Ece, and Zilberstein, Shlomo. A multi-
objective approach to mitigate negative side effects. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence (2020).

[125] Saisubramanian, Sandhya, Roberts, Shannon C, and Zilberstein, Shlomo. Un-
derstanding user attitudes towards negative side effects of AI systems. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(2021).

[126] Saisubramanian, Sandhya, and Zilberstein, Shlomo. Safe reduced models for
probabilistic planning. In Proceedings of the ICML/IJCAI/AAMAS Workshop
on Planning and Learning (Stockholm, Sweden, 2018).

[127] Saisubramanian, Sandhya, and Zilberstein, Shlomo. Adaptive outcome selection
for planning with reduced models. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (Macau, China, 2019).

[128] Saisubramanian, Sandhya, and Zilberstein, Shlomo. Minimizing the negative
side effects of planning with reduced models. In Proceedings of the AAAI Work-
shop on Artificial Intelligence Safety (Honolulu, Hawaii, 2019).

165

[129] Saisubramanian, Sandhya, Zilberstein, Shlomo, and Shenoy, Prashant J. Plan-
ning using a portfolio of reduced models. In Proceedings of the Seventeenth In-
ternational Conference on Autonomous Agents and Multiagent Systems (Stock-
holm, Sweden, 2018), pp. 2057–2059.

[130] Shim, Jaeeun, Arkin, Ronald, and Pettinatti, Michael. An intervening ethi-
cal governor for a robot mediator in patient-caregiver relationship. In IEEE
International Conference on Robotics and Automation (2017).

[131] Silver, David, Hubert, Thomas, Schrittwieser, Julian, Antonoglou, Ioannis, Lai,
Matthew, Guez, Arthur, Lanctot, Marc, Sifre, Laurent, Kumaran, Dharshan,
Graepel, Thore, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science 362, 6419 (2018), 1140–1144.

[132] Simon, Herbert A. Administrative Behavior. Macmillan, New York, NY, USA,
1947.

[133] Simon, Herbert A. Models of Bounded Rationality. MIT Press, Cambridge,
MA, 1982.

[134] Sondik, Edward Jay. The optimal control of partially observable Markov pro-
cesses. Tech. rep., Stanford University, 1971.

[135] Spaan, Matthijs TJ, and Vlassis, Nikos. Perseus: Randomized point-based value
iteration for POMDPs. Journal of Artificial Intelligence Research 24 (2005),
195–220.

[136] Speck, David, Biedenkapp, André, Hutter, Frank, Mattmüller, Robert, and
Lindauer, Marius. Learning heuristic selection with dynamic algorithm config-
uration. In Proceedings of the International Conference on Automated Planning
and Scheduling (2021), vol. 31, pp. 597–605.

[137] Srivihok, Anongnart, and Sukonmanee, Pisit. E-commerce intelligent agent:
Personalization travel support agent using Q-learning. In Proceedings of the
Seventh International Conference on Electronic Commerce (2005), pp. 287–292.

[138] Sun, Xiaoxun, Druzdzel, Marek J., and Yuan, Changhe. Dynamic weight-
ing A* search-based MAP algorithm for Bayesian networks. In Proceedings of
the Twentieth International Joint Conference on Artificial Intelligence (2007),
pp. 2385–2390.

[139] Sutton, Richard S. Learning to predict by the methods of temporal differences.
Machine Learning 3, 1 (1995), 9–44.

[140] Sutton, Richard S, and Barto, Andrew G. Reinforcement learning: An intro-
duction. MIT press, 2018.

166

[141] Sutton, Richard S., Precup, Doina, and Singh, Satinder. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial Intelligence 112, 1-2 (1999), 181–211.

[142] Svegliato, Justin, Basich, Connor, Saisubramanian, Sandhya, and Zilberstein,
Shlomo. Using metareasoning to maintain and restore safety for reliably auton-
omy. In Proceedings of the IJCAI Workshop on Robust and Reliable Autonomy
in the Wild (2021).

[143] Svegliato, Justin, Nashed, Samer, and Zilberstein, Shlomo. Ethically compliant
planning in moral autonomous systems. In Proceedings of the IJCAI Workshop
on AI Safety (2020).

[144] Svegliato, Justin, Nashed, Samer, and Zilberstein, Shlomo. An integrated ap-
proach to moral autonomous systems. In Proceedings of the Twenty-Forth Eu-
ropean Conference on Artificial Intelligence (2020).

[145] Svegliato, Justin, Nashed, Samer B, and Zilberstein, Shlomo. Ethically compli-
ant sequential decision making. In Proceedings of the Thirty-Fifth International
Conference on Artificial Intelligence (2021), AAAI.

[146] Svegliato, Justin, Sharma, Prakhar, and Zilberstein, Shlomo. A model-free
approach to meta-level control of anytime algorithms. In Proceedings of the
IEEE International Conference on Robotics and Automation (Paris, France,
2020).

[147] Svegliato, Justin, Witty, Sam, Houmansadr, Amir, and Zilberstein, Shlomo.
Belief space planning for automated malware defense. In Proceedings of the
IJCAI/ECAI Workshop on AI for Internet of Things (2018).

[148] Svegliato, Justin, Wray, Kyle Hollins, Witwicki, Stefan J, Biswas, Joydeep,
and Zilberstein, Shlomo. Belief space metareasoning for exception recovery.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (2019), IEEE, pp. 1224–1229.

[149] Svegliato, Justin, Wray, Kyle Hollins, and Zilberstein, Shlomo. Meta-level con-
trol of anytime algorithms with online performance prediction. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence
(2018).

[150] Svegliato, Justin, and Zilberstein, Shlomo. Adaptive metareasoning for bounded
rational agents. In Proceedings of the IJCAI Workshop on Architectures and
Evaluation for Generality, Autonomy and Progress in AI (2018).

[151] Tan, Ying, Liu, Wei, and Qiu, Qinru. Adaptive power management using RL. In
Proceedings of the International Conference on Computer-Aided Design (2009),
pp. 461–467.

167

[152] Tesauro, Gerald. Temporal difference learning and TD-gammon. Communica-
tions of the ACM 38, 3 (1995), 58–68.

[153] Thayer, Jordan, and Ruml, Wheeler. Using distance estimates in heuristic
search. In Proceedings of the Nineteenth International Conference on Automated
Planning and Scheduling (2009), pp. 382–385.

[154] Thayer, Jordan, and Ruml, Wheeler. Anytime heuristic search: Frameworks
and algorithms. In Proceedings of the Third Annual Symposium on Combina-
torial Search (2010), pp. 121–128.

[155] Thrun, Sebastian, Hahnel, Dirk, Ferguson, David, Montemerlo, Michael,
Triebel, Rudolph, Burgard, Wolfram, Baker, Christopher, Omohundro,
Zachary, Thayer, Scott, and Whittaker, William. A system for volumetric
robotic mapping of abandoned mines. In Proceedings of the IEEE International
Conference on Robotics and Automation (2003), pp. 4270–4275.

[156] Urmson, Chris, and Simmons, Reid. Approaches for heuristically biasing RRT
growth. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (2003), vol. 2, IEEE, pp. 1178–1183.

[157] Van Den Berg, Jur, Ferguson, Dave, and Kuffner, James. Anytime path plan-
ning and replanning in dynamic environments. In Proceedings of the IEEE
International Conference on Robotics and Automation (2006), Ieee, pp. 2366–
2371.

[158] Verma, Vandi, Gordon, Geoff, Simmons, Reid, and Thrun, Sebastian. Particle
filters for fault diagnosis. IEEE Robotics and Automation Magazine 11 (2004),
56–64.

[159] Vinyals, Oriol, Babuschkin, Igor, Czarnecki, Wojciech M, Mathieu, Michaël,
Dudzik, Andrew, Chung, Junyoung, Choi, David H, Powell, Richard, Ewalds,
Timo, Georgiev, Petko, et al. Grandmaster level in StarCraft II using multi-
agent reinforcement learning. Nature 575, 7782 (2019), 350–354.

[160] Wagner, Thomas, Garvey, Alan, and Lesser, Victor R. Criteria-directed task
scheduling. International Journal of Approximate Reasoning 19, 1-2 (1998),
91–118.

[161] Wallace, Richard J., and Freuder, Eugene C. Anytime algorithms for constraint
satisfaction and SAT problems. ACM SIGART Bulletin 7, 2 (1996), 7–10.

[162] Watkins, Christopher J. C. H., and Dayan, Peter. Q-learning. Machine Learning
8, 3 (1992), 279–292.

[163] Wellman, Michael P. Formulation of Tradeoffs in Planning under Uncertainty.
Pitman, London, UK, 1990.

168

[164] Wilhelm, Mickey R., and Ward, Thomas L. Solving quadratic assignment prob-
lems by “simulated annealing”. IIE Transactions 19, 1 (1987), 107–119.

[165] Williams, Brian C., Ingham, Michel D., Chung, Seung H., and Elliott, Paul H.
Model-based programming of intelligent embedded systems and robotic space
explorers. Proceedings of the IEEE (2003).

[166] Wilt, Christopher, and Ruml, Wheeler. When does weighted A* fail? In
Proceedings of the Fifth Annual Symposium on Combinatorial Search (2012),
pp. 137–144.

[167] Wray, Kyle Hollins, Pineda, Luis, and Zilberstein, Shlomo. Hierarchical ap-
proach to transfer of control in semi-autonomous systems. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence (2016).

[168] Wray, Kyle Hollins, Ruiken, Dirk, Grupen, Roderic A., and Zilberstein, Shlomo.
Log-space harmonic function path planning. In Proceedings of the IEEE Inter-
national Conference on Intelligent Robots and Systems (2016), pp. 1511–1516.

[169] Wray, Kyle Hollins, Witwicki, Stefan J., and Zilberstein, Shlomo. Online
decision-making for scalable autonomous systems. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence (2017).

[170] Wright, Timothy J., Agrawal, Ravi, Samuel, Siby, Wang, Yuhua, Zilberstein,
Shlomo, and Fisher, Donald L. Effects of alert cue specificity on situation
awareness in transfer of control in level 3 automation. Transportation Research
Record: Journal of the Transportation Research Board 2663, 16 (2017), 27–33.

[171] Xiao, Xuesu, Liu, Bo, Warnell, Garrett, Fink, Jonathan, and Stone, Peter. AP-
PLD: Adaptive planner parameter learning from demonstration. IEEE Robotics
and Automation Letters 5, 3 (2020), 4541–4547.

[172] Xu, Lin, Hutter, Frank, Hoos, Holger H., and Leyton-Brown, Kevin. Satzilla:
Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence
Research 32 (2008), 565–606.

[173] Zhang, Junzhe, and Bareinboim, Elias. Characterizing the limits of autonomous
systems. In Proceedings of the Seventeenth International Conference on Au-
tonomous Agents and Multiagent Systems (2018).

[174] Zhang, Shun, Durfee, Edmund H, and Singh, Satinder P. Minimax-regret query-
ing on side effects for safe optimality in factored Markov decision processes. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence (2018), pp. 4867–4873.

[175] Zilberstein, Shlomo. Operational Rationality through Compilation of Anytime
Algorithms. PhD thesis, Computer Science Division, University of California
Berkeley, 1993.

169

[176] Zilberstein, Shlomo. Resource-bounded sensing and planning in autonomous
systems. Autonomous Robots 3, 1 (1996), 31–48.

[177] Zilberstein, Shlomo. Using anytime algorithms in intelligent systems. AI Mag-
azine 17, 3 (1996), 73.

[178] Zilberstein, Shlomo. Metareasoning and bounded rationality. In Metareasoning:
Thinking about Thinking, M. Cox and A. Raja, Eds. MIT Press, Cambridge,
MA, USA, 2011.

[179] Zilberstein, Shlomo, Charpillet, Francois, and Chassaing, Philippe. Optimal
sequencing of contract algorithms. Annals of Mathematics and Artificial Intel-
ligence 39, 1-2 (2003), 1–18.

[180] Zilberstein, Shlomo, and Mouaddib, Abdel-Illah. Optimal scheduling of pro-
gressive processing tasks. International Journal of Approximate Reasoning 25,
3 (2000), 169–186.

[181] Zilberstein, Shlomo, and Russell, Stuart J. Anytime sensing, planning and
action: A practical model for robot control. In Proceedings of the International
Joint Conference on Artificial Intelligence (1993), vol. 93, pp. 1402–1407.

[182] Zilberstein, Shlomo, and Russell, Stuart J. Approximate reasoning using any-
time algorithms. In Imprecise and Approximate Computation, S. Natarajan,
Ed. Springer, 1995, pp. 43–62.

[183] Zilberstein, Shlomo, Washington, Richard, Bernstein, Daniel S., and Mouaddib,
Abdel-Illah. Decision-theoretic control of planetary rovers. In Revised Papers
from the International Seminar on Advances in Plan-Based Control of Robotic
Agents (London, UK, 2002), Springer-Verlag.

170

