
Meta-Level Control of Anytime Algorithms with Online Performance Prediction

Justin Svegliato and Kyle Hollins Wray and Shlomo Zilberstein
College of Information and Computer Sciences

University of Massachusetts Amherst
{jsvegliato,wray,shlomo}@cs.umass.edu

Abstract
Anytime algorithms enable intelligent systems to
trade computation time with solution quality. To
exploit this crucial ability in real-time decision-
making, the system must decide when to interrupt
the anytime algorithm and act on the current solu-
tion. Existing meta-level control techniques, how-
ever, address this problem by relying on significant
offline work that diminishes their practical utility
and accuracy. We formally introduce an online per-
formance prediction framework that enables meta-
level control to adapt to each instance of a problem
without any preprocessing. Using this framework,
we then present a meta-level control technique and
two stopping conditions. Finally, we show that our
approach outperforms existing techniques that re-
quire substantial offline work. The result is effi-
cient nonmyopic meta-level control that reduces the
overhead and increases the benefits of using any-
time algorithms in intelligent systems.

1 Introduction
Anytime algorithms have been developed for a wide range
of real-time planning and decision-making tasks, such as
belief-space planning [Pineau et al., 2003], probabilistic in-
ference [Ramos and Cozman, 2005], heuristic search [Hansen
et al., 1997; Richter et al., 2010], motion planning [Luna et
al., 2013], and object detection [Richtsfeld et al., 2013]. Sim-
ply put, an anytime algorithm is an algorithm that gradually
improves the quality of a solution as it runs and returns the
current solution if it is interrupted. This behavior enables an
anytime algorithm to trade computation time with solution
quality. In intelligent systems, this has proven to be useful
since they must often approximate solutions to complex prob-
lems in order to respond within an acceptable amount of time.
However, to exploit the trade-off between solution quality and
computation time, the system must solve a non-trivial meta-
level control problem: it must decide when to interrupt the
anytime algorithm and act on the current solution.

There have been substantial efforts to develop effective
meta-level control for anytime algorithms. One approach
estimates the stopping point of the algorithm before it be-
gins and lets it run until that stopping point has been

reached [Horvitz, 1987; Boddy and Dean, 1994]. Since the
stopping point is not revised after the algorithm begins, this
approach is called fixed allocation. If there is little uncer-
tainty about the performance of the algorithm or the urgency
for the solution, fixed allocation interrupts the algorithm near
the optimal stopping point. However, in real-time decision-
making problems, there is often considerable uncertainty
about either or both variables [Paul et al., 1991]. Hence,
another approach monitors the performance of the algorithm
and estimates the stopping point at run time [Horvitz, 1990;
Zilberstein and Russell, 1995; Hansen and Zilberstein, 2001].
Given that the stopping point is continually revised based
on the performance of the algorithm, this approach is called
monitoring. Monitoring has proven to be a better approach to
meta-level control than fixed allocation because it more effec-
tively handles variance in the performance of the algorithm.

Existing meta-level control techniques that use either fixed
allocation or monitoring have traditionally relied on signifi-
cant offline work. In particular, before the start of an anytime
algorithm, a model that describes its performance must be
compiled for the given problem [Zilberstein, 1996]. Relying
on such a model, called a performance profile, has several
drawbacks. First, one must solve often more than a thou-
sand instances of the problem to compile the model [Hansen
and Zilberstein, 2001]. This costly overhead could take days
or weeks for complex problems. Second, because each in-
stance must be solved until completion, it can be infeasible
to compile a model for intractable problems. Third, if one
modifies the algorithm, the problem, or the system, the model
must be recompiled. Fourth, since the model is an expecta-
tion over many instances, it may not accurately represent the
performance of the algorithm on each specific instance. Fi-
nally, each instance must be drawn from a predicted distri-
bution rather than the true distribution to compile the model.
In short, existing techniques rely on substantial preprocessing
that can decrease their practical utility and accuracy.

Addressing the drawbacks of existing meta-level control
techniques, our primary contributions are: (1) an online
performance prediction framework, (2) a meta-level control
technique that uses online performance prediction, and (3) a
myopic and nonmyopic projected stopping condition. Most
importantly, we show that our approach outperforms exist-
ing techniques that require substantial offline work on several
benchmark domains and a mobile robot domain.

Figure 1: An idealized example of the meta-level control problem.

2 Meta-Level Control Problem
We begin by reviewing the meta-level control problem for
anytime algorithms. This problem requires a model that rep-
resents the utility of a solution computed by an algorithm.
Intuitively, in real-time decision-making tasks, a solution of
a particular quality computed in a second has higher utility
than a solution of the same quality computed in an hour. This
suggests that the utility of a solution is a function of both
quality and computation time [Horvitz and Rutledge, 1991;
Boddy and Dean, 1994]. Accordingly, we define the utility of
a solution as follows.

Definition 1. A time-dependent utility function, U(q, t), rep-
resents the utility of a solution of quality q at time step t.

It is often possible to simplify a time-dependent util-
ity function by expressing it as the difference between two
functions called object-level utility and inference-level util-
ity [Horvitz, 1988]. First, object-level utility represents the
utility of a solution if we consider only the quality of that
solution, ignoring the cost of computation time. Second,
inference-level utility represents the utility of a solution if we
take into account only the time needed to compute that so-
lution, disregarding the value of solution quality. Adopting
standard terminology [Russell and Wefald, 1991], we define
this property below [Hansen and Zilberstein, 2001].

Definition 2. A time-dependent utility function, U(q, t), is
time-separable if the utility of a solution of quality q at time
step t can be expressed as the difference between two func-
tions, U(q, t) = UI(q)− UC(t), where UI(q) is the intrinsic
value function and UC(t) is the cost of time.

Given a time-dependent utility function, the meta-level
control problem is the problem of deciding when to interrupt
an anytime algorithm and act on the current solution. Figure 1
illustrates a typical instance of the meta-level control prob-
lem [Zilberstein, 1996]. In this example, the algorithm should
be interrupted at the optimal stopping point. This is the point
at which the time-dependent utility function is the highest.
However, in practice, the optimal stopping point often can-
not be determined due to considerable uncertainty about the
performance of the algorithm or the urgency for the solution.
The optimal stopping point must therefore be estimated us-
ing a model of either or both variables. Similar to earlier
work [Hansen and Zilberstein, 2001], we assume that there is
only uncertainty about the performance of the algorithm.

3 Online Performance Prediction
We now introduce an online performance prediction frame-
work for anytime algorithms. Existing meta-level control
techniques use performance profiles to predict the expected
quality of the next solution as a function of several prop-
erties, including the computation time and the quality of
the current solution [Dean and Boddy, 1988; Horvitz, 1990;
Hansen and Zilberstein, 2001]. As discussed earlier, rely-
ing on a performance profile has several drawbacks in that it
requires significant preprocessing that can decrease the prac-
tical utility and accuracy of meta-level control.

In place of a performance profile, we define a pair of vec-
tors that jointly represent the performance of an anytime al-
gorithm. The first vector describes the past performance of
the algorithm as it solves a specific problem instance. Past
performance can be expressed as a vector of solution quali-
ties observed from the initial solution to the current solution.
We formalize past performance below.

Definition 3. A performance history, ~h, represents the past
performance of an anytime algorithm as a vector of solution
qualities, ~h = [q0 q1 . . . qt], observed from the start time
step to the current time step t at fixed intervals of ∆t.

The second vector represents the future performance of an
anytime algorithm as it solves a specific problem instance.
Future performance can be specified as a vector of solution
qualities projected over the remaining time of the algorithm
after the current solution to the final solution. We describe
future performance as follows.
Definition 4. A performance projection, ~p, represents the
future performance of an anytime algorithm as a vector of
solution qualities, ~p = [qt+1 qt+2 . . . qT], projected from the
time step t+1 to the final time step T at fixed intervals of ∆t.
Note that the final time step T is an upper bound on the de-
sired time allocated to the algorithm. Unlike a performance
profile, a performance projection is entirely based on the per-
formance of the algorithm on the problem instance at hand.

To predict the future performance of an anytime algorithm,
we use its past performance on the single problem instance
being solved. This can be viewed as a function that computes
a performance projection from a performance history. Note
that this function can be implemented in many ways. In most
cases, a simple method, such as linear or nonlinear regression,
can compute a sensible performance projection from a perfor-
mance history. It may also be possible to use richer models,
such as neural networks or regression trees, that include fea-
tures of the algorithm [Bartz-Beielstein and Markon, 2004;
Huang et al., 2010; Xu et al., 2008]. However, these models
must be adapted to an online context to avoid the drawbacks
of a performance profile. Without committing to a specific
implementation, we define this function broadly below.

Definition 5. A performance predictor, Φ(~h) = ~p, maps a
performance history ~h to a performance projection ~p.
We discuss a performance predictor that uses nonlinear re-
gression later. Note that a performance predictor can com-
pute performance projections from a weighted performance
history with a bias toward recent solution qualities as well.

Figure 2: An illustration of online performance prediction.

Figure 2 offers an intuitive depiction of a performance pre-
dictor. Ideally, it computes performance projections that ap-
proach the true performance of an anytime algorithm as the
size of the performance history increases. For instance, at the
ith time step, the performance projection ~p i does not closely
approximate the true performance ~p ∗: in fact, it appears to
be overly optimistic. However, at the (i + 1)th time step,
the next performance projection ~p i+1 draws closer to the true
performance ~p ∗. In practice, as the performance predictor ex-
ploits more solution qualities in the performance history, the
performance projections approach the true performance of an
algorithm. Note that the performance history is a sequence of
solution qualities observed from the start time step to the cur-
rent time step of the algorithm. Similarly, each performance
projection is a sequence of solution qualities projected after
the current time step to the final time step of the algorithm.

4 Meta-Level Control Technique
In this section, we present a meta-level control technique for
anytime algorithms that uses our online performance predic-
tion framework. Similar to earlier work, our technique moni-
tors the performance of the algorithm and estimates the stop-
ping point at run time [Horvitz, 1990; Breese and Horvitz,
1991; Zilberstein and Russell, 1995; Hansen and Zilberstein,
2001]. However, unlike existing techniques that rely on a per-
formance profile that must be compiled offline before the start
of the algorithm, our technique uses online performance pre-
diction: at every monitoring step, it computes a performance
projection from a growing performance history using a per-
formance predictor. Our technique therefore avoids relying
on significant preprocessing that can decrease the practical
utility and accuracy of meta-level control.

Algorithm 1 describes our meta-level control technique.
First, the current time step and the performance history are
initialized and the anytime algorithm is started. Note that the
performance history is initially empty. Next, the performance
of the algorithm is monitored at fixed intervals. At each mon-
itoring step, the quality of the current solution is appended to
the performance history and a performance projection is com-
puted from that performance history using the performance
predictor. If the performance projection has met the stopping
condition, which we discuss in detail later, the algorithm is
interrupted and the current solution is returned. Otherwise,
the algorithm continues. The algorithm is monitored until in-
terrupted or terminated naturally.

Algorithm 1: A meta-level control technique that uses
online performance prediction.

Input: An anytime algorithm A, a performance predictor Φ,
a projected stopping condition C, and a duration ∆t

Output: A solution α
1 t← 0

2 ~h← []
3 A.Start()

4 while A.Running() do
5 α← A.CurrentSolution()
6 q ← α.Quality()

7 ~h← ~h‖q
8 ~p = Φ(~h)

9 if C(~p) then
10 A.Stop()
11 return α
12 t← t+ ∆t
13 Sleep(∆t)

14 return α

In general, a meta-level control technique uses a stopping
condition to determine whether or not an anytime algorithm
should be interrupted. If the stopping condition evaluates to
true, the technique interrupts the algorithm. Otherwise, it lets
the algorithm continue. An optimal stopping condition inter-
rupts the algorithm when the expected value of computation
(EVC) is no longer positive, where the EVC can be expressed
as the expected improvement of the time-dependent utility of
a solution [Horvitz, 1990]. To calculate the EVC, however,
the technique must consider the entire sequence of remain-
ing decisions about whether to continue or interrupt the algo-
rithm. Thus, because such a calculation is often intractable,
meta-level control uses an estimate of the EVC in practice.

Given this line of reasoning, our meta-level control tech-
nique uses a stopping condition that depends on the projected
performance of an anytime algorithm. We call this a projected
stopping condition and denote it as C(~p) in Algorithm 1. We
define two projected stopping conditions below.

4.1 Myopic Projected Stopping Condition
The first stopping condition uses the projected one-step im-
provement of the utility of the current solution to determine
whether or not the anytime algorithm should be interrupted.
This can be expressed as the difference between two utili-
ties: the utility of the projected next solution and the utility of
the current solution. Note that these are both time-dependent
utilities. We define the myopic improvement as follows.
Definition 6. Suppose that an anytime algorithm computes
a solution of quality q at time step t. The myopic projected
value of computation (MPVC) is

MPVC(q, t,∆t) = U(pt+∆t, t+ ∆t)− U(q, t)

for an additional time step ∆t given the current performance
projection ~p.

While the MPVC is positive, our technique lets the algo-
rithm continue. Simply put, the algorithm continues so long

as the projected one-step improvement of the current solution
is positive. We define our myopic stopping condition below.
Definition 7. The meta-level control technique with the my-
opic stopping condition lets an anytime algorithm continue
as long as MPVC(q, t,∆t) > 0.
We refer to this version of our technique as the myopic meta-
level control technique.

In practice, if the performance of the anytime algorithm is
concave, our myopic technique will interrupt the algorithm at
the optimal stopping point near the global maximum of the
time-dependent utility. Intuitively, when the performance of
the algorithm is concave, the benefit of continuing the algo-
rithm diminishes over time. Thus, if our myopic technique
interrupts the algorithm, that decision will remain optimal at
any later time step. Often, however, the performance of the al-
gorithm includes steps with little or no improvement. In this
more likely case, because our myopic technique only con-
siders the very next solution, it may interrupt the algorithm
too early near a local maximum of the time-dependent utility.
Hence, we define a more accurate yet more computationally
demanding projected stopping condition that relaxes the as-
sumption that the performance of the algorithm is concave.

4.2 Nonmyopic Projected Stopping Condition
The second stopping condition improves upon the first con-
dition by considering the projected best solution instead of
the projected next solution. Therefore, this can be expressed
as the difference between two utilities: the utility of the pro-
jected best solution and the utility of the current solution. We
define the nonmyopic improvement as follows.
Definition 8. Suppose that an anytime algorithm computes a
solution of quality q at time step t. The nonmyopic projected
value of computation (NPVC) is

NPVC(q, t) = maxt′U(pt′ , t
′)− U(q, t)

given the current performance projection ~p.
While the NPVC is positive, our technique lets the algo-

rithm continue. Intuitively, even if the projected next solution
is worse, the algorithm continues so long as the projected fu-
ture improvement of the current solution is positive. We de-
fine our nonmyopic stopping condition below.
Definition 9. The meta-level control technique with the non-
myopic stopping condition lets an anytime algorithm con-
tinue as long as NPVC(q, t) > 0.
Once again, we refer to this version of our technique as the
nonmyopic meta-level control technique.

Our nonmyopic technique is not as shortsighted as our my-
opic technique. Simply put, because the nonmyopic stopping
condition uses the projected best solution in place of the pro-
jected next solution, our nonmyopic technique is less likely
to interrupt the anytime algorithm too early near a local max-
imum of the time-dependent utility. As a result, even when
the performance of the algorithm includes steps with little or
no improvement, our nonmyopic technique will still interrupt
the algorithm closer to the optimal stopping point near the
global maximum of the time-dependent utility. This results
in more effective meta-level control.

5 Experiments
We compare our myopic and nonmyopic meta-level con-
trol technique to two state-of-the-art techniques developed by
Hansen and Zilberstein [2001]:

1. a myopic monitor that interrupts an anytime algorithm
once an estimate of the EVC is no longer positive, and

2. a nonmyopic monitor that interrupts an anytime algo-
rithm once instructed to by a monitoring policy.

Note that these techniques rely on a performance profile that
must be compiled offline prior to the activation of the anytime
algorithm. The nonmyopic technique depends on a monitor-
ing policy that must be computed offline as well.

All experiments represent a typical instance of the meta-
level control problem where an intelligent system must de-
cide when to interrupt an anytime algorithm and act on the
current solution. To do this, we run two processes in par-
allel. The object-level process uses an anytime algorithm to
solve an instance of a particular problem. At the same time,
the meta-level process uses a meta-level control technique to
monitor and control the anytime algorithm at fixed intervals.
The experiment concludes when the anytime algorithm is ei-
ther interrupted or terminated naturally. Note that all tech-
niques monitor approximately every tenth of a second.

As discussed earlier, meta-level control requires a time-
dependent utility function. Similar to earlier work, we define
the time-dependent utility of a solution of quality q at time
step t as the function, U(q, t) = αq − eβt, where the rates α
and β are selected in practice based on the value of a solution
and the urgency for a solution [Hansen and Zilberstein, 2001].
In all experiments, we deliberately select rates to avoid trivial-
izing the problem (e.g., by making the urgency for a solution
so high that the algorithm is interrupted immediately or so
low that it runs to completion). Note that the first and second
terms of the time-dependent utility function are the intrinsic
value function and the cost of time respectively.

In contrast to existing techniques, our approach only re-
quires a simple performance predictor. We use a perfor-
mance predictor based on nonlinear regression (i.e., nonlinear
least squares) with the model, f(x; ~θ) = θ1g(x + θ2) + θ3,
where the vector ~θ contains the parameters of the model
and the function g represents a nonlinear function. Because
anytime algorithms generally exhibit the diminishing returns
property [Zilberstein, 1996], many logarithmic and sigmoidal
functions work effectively. Unlike a performance profile that
must be built using a lengthy program, we emphasize that a
performance predictor can be implemented in a few lines of
code using the open-source Python library SciPy.

We apply all techniques to several benchmark domains and
a mobile robot domain. Unless otherwise noted, we evaluate
the performance of each technique using the average time-
dependent utility across 50 instances of the problem. Thus,
higher utilities indicate better performance. As an exception,
when we have access to an efficient optimal solver, we use
the average time-dependent utility loss instead. Hence, lower
losses signify better performance. Note that the results of
the myopic and nonmyopic techniques have been separated
to guarantee a fair comparison.

Type Prediction 50-TSP (%) 60-TSP (%) 70-TSP (%) 80-TSP (%) 90-TSP (%)

Nonmyopic
Online 1.14 ± 0.16 1.64 ± 0.26 1.25 ± 0.20 1.41 ± 0.19 1.39 ± 0.26
Offline 1.81 ± 0.25 3.63 ± 0.47 2.53 ± 0.53 2.04 ± 0.26 3.65 ± 0.63

Myopic
Online 14.34 ± 2.14 19.87 ± 4.18 29.22 ± 2.38 35.49 ± 1.80 37.43 ± 2.25
Offline 33.83 ± 2.64 46.50 ± 1.09 54.40 ± 1.07 57.47 ± 1.04 55.58 ± 1.10

Table 1: The average time-dependent utility loss for the best tour computed by the Lin-Kernighan heuristic on a range of TSPs.

Type Prediction 20-JSP 40-JSP

Nonmyopic
Online 119.19 ± 1.21 102.62 ± 0.82
Offline 115.64 ± 0.74 95.57 ± 0.25

Myopic
Online 114.08 ± 1.92 97.49 ± 2.92
Offline 101.20 ± 0.81 91.28 ± 0.50

Table 2: The average time-dependent utility for the best schedule
computed by the genetic algorithm on two JSPs.

5.1 Benchmark Domains
We begin by evaluating our meta-level control technique on
several benchmark domains. Ideally, the quality of a solu-
tion can be defined as the approximation ratio, q = c∗/c,
where c∗ is the cost of the optimal solution and c is the cost
of the current solution. However, because the cost of the opti-
mal solution cannot quickly be computed for the benchmark
problems, we estimate the quality of a solution as the approx-
imation ratio, q = `/c, where ` is a problem-dependent lower
bound on the optimal solution. For the performance predictor,
we use the sigmoidal function g(x) = arctan(x) since the
benchmark anytime algorithms exhibit diminishing returns.

Lin-Kernighan Heuristic
First, we consider a common benchmark in meta-level con-
trol of anytime algorithms [Hansen and Zilberstein, 2001] in
Table 1. The Lin-Kernighan heuristic is a tour improvement
algorithm that solves the traveling salesman problem (TSP)
approximately [Lin and Kernighan, 1973]. The algorithm
starts with an initial tour and gradually improves that tour by
swapping specific subtours until convergence. We estimate
solution (tour) quality using the lower bound, `tsp, defined as
the length of the minimum spanning tree of the TSP.

Genetic Algorithms
Next, we examine a genetic algorithm that solves the job
shop problem (JSP) approximately in Table 2. A JSP has
a set of jobs composed of a sequence of tasks that must
be scheduled on a set of machines. Since genetic algo-
rithms have often been used to solve JSPs [Nakano and Ya-
mada, 1991; Della Croce et al., 1995], we use a standard
open-source Python implementation, jsp-ga, for a genetic al-
gorithm that includes swap mutation and generalized order
crossover [Bierwirth, 1995; Puigcerver, 2013]. We estimate
solution (schedule) quality using the lower bound, `jsp, de-
fined as the time required to complete the longest job. Note
that 30-JSP, 50-JSP, and 60-JSP show similar results.

Simulated Annealing
Finally, we explore a simulated annealing algorithm that
solves the quadratic assignment problem (QAP) approxi-
mately in Table 3. A QAP has a set of facilities that must

Type Prediction 100-QAP 200-QAP

Nonmyopic
Online 165.55 ± 0.06 164.78 ± 0.04
Offline 162.78 ± 0.01 162.84 ± 0.04

Myopic
Online 162.20 ± 0.74 160.77 ± 0.37
Offline 159.55 ± 0.08 159.32 ± 0.05

Table 3: The average time-dependent utility for the best assignment
computed by simulated annealing on two QAPs.

be assigned to a set of locations where a distance is given
for each pair of locations and a flow is given for each
pair of facilities. Since simulated annealing has often been
used to solve QAPs [Misevičius, 2003], we use a standard
open-source Fortran library, QAPLIB, for a simulated an-
nealing algorithm [Burkard et al., 1997]. We estimate so-
lution (assignment) quality using the Gilmore-Lawler lower
bound, `qap, which is the optimal cost of a linearization of
a QAP [Gilmore, 1962]. Note that 50-QAP, 150-QAP, and
250-QAP show similar results.

5.2 Mobile Robot Domain
We now evaluate our meta-level control technique on a mo-
bile robot domain. In simulation and on a mobile robot, we
employ a path planning algorithm that generates paths that
gradually minimize the probability of hitting obstacles. On an
iClebo Kobuki, we use a standard open-source robotics C++
framework, epic, for the path planning algorithm [Wray et al.,
2016]. We measure solution (path) quality as just the prob-
ability of hitting obstacles. The mobile robot must therefore
trade computation time with path safety. For the performance
predictor, we use the logarithmic function g(x) = log(x) to
demonstrate that other types of functions work effectively;
however, we observe similar results with the sigmoidal func-
tion g(x) = arctan(x) as well. Conducting experiments on
an actual robot ensures that our approach produces meaning-
ful behavior and is suitable for use on real systems.

Table 4 shows the results of the experiments in simulation.
In this case, we run all techniques on three maps. The first
map, OFFICE, is a domain in which the goal is impeded by
many boxes. The other maps, MINE-S and MINE-L, are
well-known domains of coal mines generated using a map-
ping procedure developed by Thrun et al. [2003]. The in-
stances of each problem are associated with a random start
position but the same goal position.

Figure 3 depicts the results of the experiments on a mo-
bile robot. In this case, we run our nonmyopic technique on
the OFFICE map. We only consider our nonmyopic technique
given its dominant performance in simulation. The four sce-
narios are associated with an infinite, high, low, and nil cost
of time but the same start and goal position.

Type Prediction OFFICE MINE-S MINE-L

Nonmyopic Online 88.43 ± 0.67 87.90 ± 0.71 86.74 ± 1.16
Offline 79.12 ± 0.32 56.02 ± 0.16 70.83 ± 0.69

Myopic Online 85.60 ± 0.97 86.72 ± 0.83 84.62 ± 1.23
Offline 44.12 ± 3.84 52.91 ± 3.61 65.76 ± 3.60

Table 4: The average time-dependent utility for the best path com-
puted by the path planning algorithm on three maps.

Figure 3: The OFFICE map (left) and the environment (right). The
riskiest path (red), a very risky path (yellow), a very safe path (blue),
and the safest path (green) are also shown.

6 Discussion
On all benchmark domains, not only does our meta-level con-
trol technique avoid offline work, but it also outperforms the
state-of-the-art. Given similar results across every domain,
we focus our analysis on the Lin-Kernighan heuristic domain
in Table 1. In the nonmyopic case, our technique incurs a loss
under 2% on every problem. As the size of the problem in-
creases, the loss of our nonmyopic technique remains steady
while the existing technique varies. In the myopic case, the
difference between our technique and the existing technique
is even larger. As the size of the problem increases, the my-
opic technique degrades more slowly than the existing tech-
nique as well. While all techniques may be improved with a
richer model using problem-specific instance features [Hutter
et al., 2014], it is encouraging that we obtain near optimal
results given only computation time and solution quality.

Figure 4 illustrates the preprocessing time required to com-
pile a performance profile and a monitoring policy for the
state-of-the-art techniques on the Lin-Kernighan heuristic do-
main. This shows that preprocessing time grows rapidly with
the size of the problem. In fact, even for modest problems,
compiling a performance profile and a monitory policy can
take hours of offline work. Furthermore, Figure 5 illustrates
the improvement in the prediction error over time for our
nonmyopic technique on the Lin-Kernighan heuristic domain.
This shows that prediction error falls quickly with the size of
the performance history. In particular, for all problems, the
prediction error starts at less than 21% and ends at less than
7%. Note that the prediction error is expressed as the maxi-
mum difference between the current performance projection
and the true performance of the anytime algorithm.

On the mobile robot domain, our technique substantially
outperforms the state-of-the-art techniques. In simulation in
Table 4, since the performance of the path planning algorithm
is concave [Wray et al., 2016], our myopic technique per-
forms nearly as well as our nonmyopic technique. In fact, our
myopic technique even outperforms the existing nonmyopic

Figure 4: The preprocessing time of prevailing approaches.

Figure 5: The change in the prediction error of our approach.

technique due to large variation across instances of the prob-
lem, which is not captured by a performance profile. Cru-
cially, on a mobile robot in Figure 3, our nonmyopic tech-
nique effectively trades computation time with path safety.
Given a high cost of time, the robot dangerously traverses
through the boxes to the goal. However, given a low cost of
time, the robot safely avoids the boxes entirely.

It may seem counterintuitive that our technique out-
performs state-of-the-art techniques shown to be opti-
mal [Hansen and Zilberstein, 2001]. The key idea is that
existing techniques assume that a performance profile is an
exact model of the behavior of an anytime algorithm. There
are a number of reasons, however, why such a model may
not be adequate. First, existing techniques assume that the
model is accurate across different instances of a problem
while our technique adapts to each instance by using online
performance prediction. Next, when existing techniques are
deployed, they do not perform as well because the model was
compiled using some predicted distribution instead of the true
but unknown distribution. Moreover, the model loses infor-
mation about the performance of the algorithm as solution
quality and computation time must be discretized into a small
number of bins. Finally, since the model is compiled under
specific CPU and memory conditions, existing techniques be-
come less accurate given variance in these conditions. Even
without any offline work, our technique avoids these pitfalls.

7 Conclusion
We offer a novel approach to meta-level control designed for
practical and accurate use in intelligent systems. It offers
many advantages over existing techniques: not only does it
provide more effective meta-level control, but it also elim-
inates the need for any offline preprocessing. More impor-
tantly, to highlight that our approach produces effective meta-
level control on the fly, we show that it outperforms state-
of-the-art techniques on several benchmark domains and an
actual mobile robot. Future work will explore more sophisti-
cated performance predictors that use a richer, featured-based
representation of the state of the anytime algorithm.

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. We also thank Alan Labouseur and Sandhya Saisub-
ramanian for their valuable feedback. This work was sup-
ported in part by the National Science Foundation grants IIS-
1405550 and IIS-1724101.

References
[Bartz-Beielstein and Markon, 2004] Thomas Bartz-Beielstein and

Sandor Markon. Tuning search algorithms for real-world appli-
cations: A regression tree based approach. In IEEE Congress on
Evolutionary Computation, pages 1111–1118, 2004.

[Bierwirth, 1995] Christian Bierwirth. A generalized permutation
approach to job shop scheduling with genetic algorithms. Oper-
ations Research Spectrum, 17(2-3):87–92, 1995.

[Boddy and Dean, 1994] Mark Boddy and Thomas L. Dean. Delib-
eration scheduling for problem solving in time-constrained envi-
ronments. Artificial Intelligence, 67(2):245–285, 1994.

[Breese and Horvitz, 1991] John S. Breese and Eric J. Horvitz.
Ideal reformulation of belief networks. In 6th Conf. on Uncer-
tainty in Artificial Intelligence, pages 129–143, 1991.

[Burkard et al., 1997] Rainer E. Burkard, Stefan E. Karisch, and
Franz Rendl. QAPLIB–A quadratic assignment problem library.
Journal of Global Optimization, 10(4):391–403, 1997.

[Dean and Boddy, 1988] Thomas L. Dean and Mark S. Boddy. An
analysis of time-dependent planning. In 7th AAAI Nat’l Conf. on
Artificial Intelligence, pages 49–54, 1988.

[Della Croce et al., 1995] Federico Della Croce, Roberto Tadei,
and Giuseppe Volta. A genetic algorithm for the job shop prob-
lem. Computers & Operations Research, 22(1):15–24, 1995.

[Gilmore, 1962] Paul C. Gilmore. Optimal and suboptimal algo-
rithms for the quadratic assignment problem. Journal of the
Society for Industrial and Applied Mathematics, 10(2):305–313,
1962.

[Hansen and Zilberstein, 2001] Eric A. Hansen and Shlomo Zilber-
stein. Monitoring and control of anytime algorithms: A dynamic
programming approach. Artificial Intelligence, 126(1-2):139–
157, 2001.

[Hansen et al., 1997] Eric A. Hansen, Shlomo Zilberstein, and Vic-
tor A. Danilchenko. Anytime heuristic search: First results. Tech-
nical Report 97-50, Computer Science Department, University of
Massachussetts Amherst, 1997.

[Horvitz and Rutledge, 1991] Eric Horvitz and Geoffrey Rutledge.
Time-dependent utility and action under uncertainty. In 7th Conf.
on Uncertainty in Artificial Intelligence, pages 151–158, 1991.

[Horvitz, 1987] Eric J. Horvitz. Reasoning about beliefs and ac-
tions under computational resource constraints. In 3rd Workshop
on Uncertainty in Artificial Intelligence, 1987.

[Horvitz, 1988] Eric Horvitz. Reasoning under varying and uncer-
tain resource constraints. In 7th AAAI Nat’l Conf. on Artificial
Intelligence, pages 111–116, 1988.

[Horvitz, 1990] Eric J. Horvitz. Computation and action under
bounded resources. PhD thesis, Stanford University, CA, 1990.

[Huang et al., 2010] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon
Chun, Petros Maniatis, and Mayur Naik. Predicting execution
time of computer programs using sparse polynomial regression.
In 24th Conf. on Neural Information Processing Systems, pages
883–891, 2010.

[Hutter et al., 2014] Frank Hutter, Lin Xu, Holger H. Hoos, and
Kevin Leyton-Brown. Algorithm runtime prediction: Methods
& evaluation. Artificial Intelligence, 206:79–111, 2014.

[Lin and Kernighan, 1973] Shen Lin and Brian W. Kernighan. An
effective heuristic algorithm for the traveling-salesman problem.
Operations Research, 21(2):498–516, 1973.

[Luna et al., 2013] R. Luna, I. A. Şucan, M. Moll, and L. E.
Kavraki. Anytime solution optimization for sampling-based mo-
tion planning. In IEEE Int’l Conf. on Robotics and Automation,
pages 5068–5074, 2013.

[Misevičius, 2003] Alfonsas Misevičius. A modified simulated an-
nealing algorithm for the quadratic assignment problem. Infor-
matica, 14(4):497–514, 2003.

[Nakano and Yamada, 1991] Ryohei Nakano and Takeshi Yamada.
Conventional genetic algorithm for job shop problems. In 4th
Int’l Conf. on Genetic Algorithms, pages 474–479, 1991.

[Paul et al., 1991] C. J. Paul, Anurag Acharya, Bryan Black, and
Jay K. Strosnider. Reducing problem-solving variance to improve
predictability. Communications of the ACM, 34(8):80–93, 1991.

[Pineau et al., 2003] Joelle Pineau, Geoff Gordon, and Sebastian
Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. In 18th Int’l Joint Conf. on Artificial Intelligence,
pages 1025–1032, 2003.

[Puigcerver, 2013] Joan Puigcerver. jsp-ga. GitHub Repository,
https://github.com/jpuigcerver/jsp-ga, 2013.

[Ramos and Cozman, 2005] ”Fabio Tozeto Ramos and
Fabio Gagliardi Cozman. Anytime anyspace probabilistic
inference. Int’l Journal of Approximate Reasoning, 38(1):53 –
80, 2005.

[Richter et al., 2010] Silvia Richter, Jordan Tyler Thayer, and
Wheeler Ruml. The joy of forgetting: Faster anytime search
via restarting. In 20th Int’l Conf. on Automated Planning and
Scheduling, pages 137–144, 2010.

[Richtsfeld et al., 2013] Andreas Richtsfeld, Michael Zillich, and
Markus Vincze. Anytime perceptual grouping of 2D features into
3D basic shapes. In 9th Int’l Conf. on Computer Vision Systems,
pages 73–82, 2013.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald. Princi-
ples of metareasoning. Artificial Intelligence, 49:361–395, 1991.

[Thrun et al., 2003] Sebastian Thrun, Dirk Hahnel, David Fergu-
son, Michael Montemerlo, Rudolph Triebel, Wolfram Burgard,
Christopher Baker, Zachary Omohundro, Scott Thayer, and
William Whittaker. A system for volumetric robotic mapping
of abandoned mines. In IEEE Int’l Conf. on Robotics and Au-
tomation, pages 4270–4275, 2003.

[Wray et al., 2016] Kyle Hollins Wray, Dirk Ruiken, Roderic A.
Grupen, and Shlomo Zilberstein. Log-space harmonic function
path planning. In IEEE Int’l Conf. on Intelligent Robots and Sys-
tems, pages 1511–1516, 2016.

[Xu et al., 2008] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin
Leyton-Brown. Satzilla: Portfolio-based algorithm selection for
SAT. Journal of Artificial Intelligence Research, 32:565–606,
2008.

[Zilberstein and Russell, 1995] Shlomo Zilberstein and Stuart J.
Russell. Approximate reasoning using anytime algorithms. In
S. Natarajan, editor, Imprecise and Approximate Computation,
pages 43–62. Springer, 1995.

[Zilberstein, 1996] Shlomo Zilberstein. Using anytime algorithms
in intelligent systems. AI Magazine, 17(3):73, 1996.

