Belief-Space Planning for Automated Malware Defense

Justin Svegliato, Sam Witty, Amir Houmansadr, Shlomo Zilberstein

College of Information and Computer Sciences
University of Massachusetts Amherst
{jsvegliato,switty,amir,shlomo } @cs.umass.edu

Abstract

Malware detection and response is critical to en-
suring information security across a wide range
of devices. There have been few attempts, how-
ever, to develop security systems that exploit the
benefits of different malware detection techniques.
We formally introduce an automated malware de-
fense framework and represent it as a belief-space
planning problem that optimally reduces the im-
pact on the performance of a system. Using the
framework, we then provide an example automated
malware defense system for email worm detec-
tion and response. Finally, we show in simulation
that the system outperforms standard security tech-
niques that have been used in practice. The result
is a novel belief-space planning approach to auto-
mated malware defense designed for robust, accu-
rate, and efficient use in large networks of resource-
constrained devices.

1 Introduction

There has been substantial work in developing malware de-
tection techniques that detect malicious files in various con-
texts, such as malware injected into compromised web-
sites [Nelms et al., 2015; Tanaka et al., 2017] or malware
masqueraded as email attachments [Schechter er al., 2004;
Masud et al., 2006]. Previous work has extensively stud-
ied malware detection techniques with varying performance
and complexity. Signature-based detection techniques ex-
tract a signature from the file and compare it to the signa-
tures of known malicious files [Faruki et al., 2015; Tuvell
and Venugopal, 2017]. Although signature-based detection
can reliably detect simple malware, it is easily circumvented
by advanced malware that obfuscates its signature through
encryption and code polymorphism [You and Yim, 2010;
Cesare et al., 2013]. Hence, to detect obfuscated malware,
behavior-based detection techniques examine the behavior of
the file through static and dynamic analysis of its code [Tian
et al., 2010; Shafiq and Liu, 2017]. While behavior-based
detection can more effectively detect advanced malware, it
typically imposes higher computational demands. Deploy-
ing malware detection techniques across large networks of
resource-constrained devices can therefore be challenging.

Despite tremendous advances in the development of
malware detection techniques, there have been few at-
tempts to build security systems that exploit the benefits of
both signature-based detection and behavior-based detection.
While signature-based detection offers minimal execution
time requirements and low system impact, it can only reliably
detect simple malware that does not employ obfuscation. On
the other hand, although behavior-based detection can con-
sistently recognize obfuscated malware, it suffers from sig-
nificant execution time requirements and high system impact.
As a result, given the limited resources of many devices, us-
ing both approaches in tandem with each other results in more
robust, accurate, and efficient malware defense. Security sys-
tems that exploit both approaches to malware detection can
thus better protect the confidentiality, integrity, and availabil-
ity of private information on resourced-constrained devices.

Recent advancements in automated decision-making offer
a particularly promising foundation for developing security
systems that can exploit the advantages of both signature-
based detection and behavior-based detection. Partially ob-
servable Markov decision processes (POMDPs) have recently
been used in a wide range of decision-making tasks, includ-
ing semi-autonomous systems [Wray et al., 2016], robotic
manipulation and task planning [Ruiken et al., 2016], and au-
tonomous car intersection planning [Wray et al., 2017]. A
POMDP provides an intuitive mathematical framework for
modeling decision-making problems in which the environ-
ment is partially observable and stochastic. Such a framework
is an especially good fit for security systems due to several
factors. First, a POMDP inherently represents the uncertainty
that a security system might have about whether or not a file is
malware. Next, due to information gathering, a POMDP nat-
urally models the malware detection techniques available to a
security system. Finally, given strong theoretical guarantees,
a POMDP optimally reduces the impact of malware detection
techniques on the performance of a system. In short, secu-
rity systems share many properties with problems for which
POMDPs have been shown to be effective.

Our primary contributions are: (1) a formal definition of
an automated malware defense framework, (2) a representa-
tion of the framework as a POMDP, and (3) an example auto-
mated malware defense system for email worm detection and
response. Finally, we show in simulation that the system out-
performs security techniques that have been used in practice.



2 Background

We begin by reviewing the formal definition of a POMDP,
a decision-making framework for reasoning in partially ob-
servable, stochastic environments [Kaelbling er al., 1998]. A
POMDP is represented by a tuple (S, A, T, R, 2, O) where
S is the set of states of the world, A is the set of actions of
the agent, T : S x A x S — [0, 1] is the transition function
that maps each state s € S and action a € A to the proba-
bility of ending up in state s’ € S, R : Sx Ax S = R
is the reward function that maps each state s € S and action
a € A to the expected immediate reward gained in s’ € S,
Q is the set of observations experienced by the agent, and
O :8xAxQ — [0,1] is the observation function that
maps each state s € S and action a € A to the probability of
observing observation w € €.

In a POMDP, the agent does not necessarily know the true
state of the world at any given time. Instead, the agent makes
noisy observations that reflect its actions and the environ-
ment. Thus, to represent its uncertainty, the agent maintains a
belief state b € B, a probability distribution over all possible
states, where B is the space of all belief states. Initially, the
agent begins with an initial belief state by € B. After per-
forming an action a € A and making an observation w € €2,
the agent updates its current belief state b € B to a new belief
state b’ € B given the belief state update equation

b (s'|b,a,w) = nO(a,s',w) Y T(s,a,s")b(s),
ses

where 7 is the normalization constant n = Pr(w|b, s) L.

At every time step, the agent must select an action based on
its current belief state. In general, the behavior of the agent
is specified by a policy 7 : B — A that maps a belief state
b € Btoanactiona € A. A policy 7 induces a value function
V7™ . B — R that represents the expected cumulative reward
of each belief state. An optimal policy m* maximizes this ex-
pected cumulative reward. In other words, if the agent were to
follow an optimal policy, it would perform actions that max-
imize its expected future reward based on its current belief
state. Note that we omit many solution methods that can be
used to find the optimal policy of a POMDP [Sondik, 1971;
Littman, 1994; Cassandra et al., 1997; Pineau et al., 2003] in
the interest of brevity.

Because the agent must maintain a belief state and select
an optimal action at every time step, it can be computation-
ally infeasible to use a policy over the space of belief states.
In many problems, however, it is possible to encode the pol-
icy as a graph without an explicit representation of the belief
state [Kaelbling er al., 1998]. Such a graph is typically re-
ferred to as a policy graph. A policy graph is a directed graph
where each node represents an action and a range of belief
states and each edge represents an observation. After the ini-
tial belief state of the agent specifies the starting node, the
agent follows the policy graph by interleaving two steps. The
agent first performs the action indicated by the current node.
The agent then makes an observation and transitions to the
node associated with that observation. This process repeats
until the agent reaches a terminal node in the policy graph. In
practice, many solution methods use a policy graph to exploit
the benefits of this more compact representation of a policy.

3 Automated Malware Defense

We now present a formal definition of an automated malware
defense framework. In general, the framework classifies po-
tentially malicious files that enter the system using a set of
threats. The framework also performs response actions that
can appropriately handle normal or malicious files that en-
ter the system. Each response action is associated with a re-
sponse cost function that describes the consequences of mis-
handling a file. Moreover, the framework executes detection
actions that can gather information about potentially mali-
cious files that enter the system through a set of measure-
ments. Each detection action is associated with a detection
cost function and an accuracy profile that indicates the over-
head and effectiveness of that detection action respectively.

An automated malware defense framework addresses all
potentially malicious files in a similar way. Suppose a file
that may or may not be a threat enters the system. Initially, be-
cause the framework does not have any information about the
file, it cannot evaluate whether or not that file is a threat be-
yond its background knowledge. Accordingly, to learn more
about the file, the framework first executes a sequence of de-
tection actions of varying costs and accuracies. After enough
information about the file has been gathered, the framework
then executes one of several response actions. If the frame-
work classifies the file as a threat, it performs a response ac-
tion that appropriately addresses that threat. On the other
hand, if the framework classifies the file as normal, it per-
forms a response action that treats that file normally. Once
the framework has performed a response action, it can then
handle other files waiting to enter the system.

Formally, an automated malware defense framework is
composed of seven attributes. First, the framework has a list
of all threats that can be assigned to a file. In the interest
of clarity, we assume that a file can only be classified as one
threat at any time. However, the framework can be extended
to handle a file that may be multiple threats simultaneously
with negligible overhead. We define the set of threats below.

Definition 1. A file that enters the system can be clas-
sified by the framework as one of many threats, © =
{2,01,04,...,0,}, where the symbol & denotes that the file
is not a threat.

Second, the framework has a list of all response actions that
can be applied to a file. Once the framework has addressed
a file using a response action, the file leaves the scope of the
system: the framework can no longer apply any actions to that
file and transitions to the next file waiting to enter the system.
We formalize the set of response actions as follows.

Definition 2. The system performs one of many response ac-
tions, P = {p1, pa2, ..., pn}, that are used to address a file.

Third, the framework has a function that provides the cost
of applying a response action to a threat. This enables the
framework to determine how effective a response action is in
handling a threat. Intuitively, some response actions may be
effective for one type of threat while others may be effective
for another type of threat. Typically, if a response action ap-
propriately addresses a threat, it incurs a low cost. Otherwise,
the response action incurs a high cost. Note that in practice



these costs reflect the constraints and preferences of the sys-
tem administrators. We describe this function below.

Definition 3. A response cost function, ¢ : P x © — R,
gives the expected cost of performing a response action p € P
against a threat 0 € ©.

Fourth, the framework has a list of all detection actions
that can be applied to a file. When the framework executes
a detection action against a file, it gathers information about
whether or not the file is a threat. We only consider idempo-
tent detection actions that generate the same assessment of a
file at any time. As a result, because each detection action is
deterministic, it is not useful to execute any detection action
multiple times. We also consider detection actions that are
independent of each other. However, we emphasize that the
framework can be extended to use a broad range of detection
actions. We define the set of detection actions as follows.

Definition 4. The system performs one of many detection ac-
tions, A = {01,02,...,0,}, that are used to gather more
information about a file.

Fifth, the framework has a list of all measurements that can
be emitted by a detection action. Every measurement pro-
vides some insight about whether or not a file is a threat. For
all detection actions, each measurement represents its level of
certainty. If the measurement indicates a high certainty, the
detection action has a high belief that the file is a threat. Oth-
erwise, the detection action has a low belief. We provide a
complete description of the set of measurements below.

Definition 5. A detection action emits one of many measure-
ments, M = {u1, o, ..., i}, that indicate increasing lev-
els of certainty about whether or not a file is a threat.

Sixth, the framework has a function that provides the cost
of applying a detection action to a file. This enables the
framework to determine the cost incurred by a detection ac-
tion. Typically, a detection action with a high cost has a high
accuracy while a detection action with a low cost has a low
accuracy. In general, the cost of a detection action considers
execution time requirements, privacy concerns, power con-
sumption, and other considerations of the system administra-
tors. Broadly, we formalize this function as follows.

Definition 6. A detection cost function, ¥V : A — R, gives
the expected cost of performing a detection action § € A.

Note that the framework would perform all detection actions
if none of the detection action incurred a cost.

Seventh, the framework has a function that provides the ac-
curacy of a detection action. This can be viewed as a function
that yields a probability distribution over the set of measure-
ments given a detection action and a threat. Intuitively, when
the file is a malicious, the detection action has a high proba-
bility of generating measurements that indicate a threat. The
framework therefore should weight the assessment of each
detection action based on its accuracy. We provide a formal
description of this function below.

Definition 7. An accuracy profile, A : © x A x M — [0, 1],
gives the probability of a detection action § € A generating
a measurement |, € M for a threat 0 € ©.

Given these attributes, it is possible to provide a complete
specification of an automated malware defense framework.
We provide a formal definition of the framework as follows.

Definition 8. An automated malware defense framework, 3.,
is represented by a tuple ¥ = (0, P, A, M, A, ®, V), where
O is the set of threats, P is the set of response actions, A is
the set of detection actions, M is the set of measurements, A
is the accuracy profile, ® is the response cost function, and V
is the detection cost function.

4 Belief-Space Planning

We show that an automated malware defense framework can
be represented as a POMDP. Once the framework has been
specified given the details of the system as well as the con-
straints and preferences of the system administrators, the
framework can be modeled as a POMDP. This enables the
framework to make decisions using the optimal policy of the
POMDP. We discuss the representation of the POMDP below.

States

The model makes decisions based on several key features of
the framework. First, the model must be aware of all of the
threats that can be assigned to a file by the framework. Next,
since each detection action does not provide any additional
insight once it has been executed, the framework should only
perform a detection algorithm once. The model must there-
fore store whether or not each detection action has been used.
Finally, recall that the framework can no longer perform any
additional actions once a response action has been performed.
As a result, the model must only record whether or not the
framework has used any of the response actions. We define
the states of the model as the set S = F; x Fy x F3 where

e F} = O represents the set of threats,

e F, = {True, False}|”! indicates whether or not each de-
tection action ¢ in the set of detection actions A has been
executed, and

o F3 = {True, False} indicates whether or not any re-
sponse action p in the set of response actions P has been
executed.

Note that feature Fj is partially observable given that the
framework cannot always know with certainty whether or not
a file is malicious. The features F> and F3 are fully observ-
able since the framework knows which response actions or
detection actions have already been performed.

Actions

The model selects actions from the set of response actions and
detection actions available to the framework. If the frame-
work has not gathered any information about the file yet, it
will likely decide to perform a detection action. However,
once the framework is confident about its assessment of the
file, it will likely decide to perform a response action. We
therefore define the actions of the model as the set A = PUA
where P is the set of response actions and A is the set of the
detection actions.



Transition Function

The model requires some representation of the transition dy-
namics of the framework. This can be expressed as a function
that maps a state and an action to a successor state. When a
detection action is executed, the successor state is a state in
which that detection action has been used. However, when a
response action is executed, the successor state is a state that
indicates whether or not any of the response actions have been
used. While it is often not possible to observe whether or not
the file is a threat, the successor state always corresponds to
the actual threat of the file. In other words, the framework
cannot change whether or not the file is a threat. Given a state
s = (f1,f2,f3) € S and an action a € A, the transition
function of the model can be expressed as the function

| (f1, fa, f3), if a€ A,
T(&a)_{(fhfz,fé), if aeP,

where fi; € F) has not been updated, f; € Fb has been
updated with respect to fo € F5 and a € A, and f§ € F3 has
been updated with respect to f3 € F3 and a € A.

Reward Function

The model depends on some representation of the rewards of
the framework. This can be expressed as a function that maps
a state and an action to an expected immediate reward. Such
a function is specified by the response cost function and the
detection cost function of the framework. Given a state s € S
and an action a € A, the reward function of the model can be
expressed as the function

®(a), ifacA,
R p—
(s:a) {‘If(s,a% if a€P,
where A is the set of the detection actions, P is the set of

response actions, ® is the detection cost function, and ¥ is
the response cost function.

Observations

The model experiences a number of observations. When a
detection action is performed, it emits a measurement that
indicates whether or not the file is a malicious. All response
actions emit an observation that signify that the file has been
addressed. Thus, the observations of the model is the set §) =
M U {n} where M is the set of measurements and 7 is the
termination observation.

Observation Function

The model uses some representation of the observation dy-
namics of the framework. This can be expressed as a func-
tion that maps a successor state and an action to a probability
distribution over all observations. Recall that a detection ac-
tion emits measurements based on the accuracy profile of the
framework. Moreover, a response action always emits a ter-
mination observation. Given a state s = (fi, f2, f3) € S,
an action a € A, and an observation w € €, the observation
function of the model can be expressed as the function

A(f1,a), if a €A,
O =
(570/50‘)) {[w:n], ifaEP,
where A is the accuracy profile, A is the set of detection ac-

tios, n is the termination observation, and P is the set of re-
sponse actions. The operator [-] is Iverson bracket notation.

S Email Worm Detection and Response

In this section, we offer an example automated malware de-
fense system for email worm detection and response. Sup-
pose an email server is about to forward an email to its des-
tination in a private network. In order to determine whether
or not the email has a worm, the email server can apply a
combination of several malware detection techniques of vary-
ing costs and accuracies to the attachment of the email. Be-
cause each malware detection technique may or may not be
confident in its evaluation of the email, it can return one of
several values that indicates its level of certainty. Once the
email server is confident about its assessment of the email,
it can either forward the email to its destination in the net-
work or drop the email from the network entirely. The email
server should be penalized for forwarding infected emails and
dropping normal emails and executing detection actions un-
necessarily. The objective of the email server is therefore to
execute as little of the malware detection techniques as nec-
essary before being confident enough to forward or drop the
email. While it is possible to execute all malware detection
techniques, this would substantially slow down email traffic
in the network and increase power consumption.

More formally, the email server can classify an email that
enters the network as either an infected email or a normal
email. Accordingly, there are no other threats aside from an
email worm. We therefore define the set of threats below:

© = {o, Worm}.

To address each email that enters the network, the email
server can either forward the email to its destination in the
network or drop the email from the network entirely. Hence,
there are two response actions that can be applied to every
email. We thus define the set of response actions as follows:

P = {Forward, Drop}.

In the interest of clarity, we only consider two response ac-
tions. Itis possible, however, to define other response actions,
such as forwarding an email with a warning, forwarding an
email without the attachment, or executing the attachment on
a quarantined host designed for malware detection.

In general, the email server should forward normal emails
to their destinations in the network and drop infected emails
from the network. This strategy is encoded by the response
cost function. One example of a response cost function as-
signs a cost of 750 to forwarding an infected email and a cost
of 50 to dropping a normal email. All other response actions
incur no cost. Given a threat # € © and a response action
p € P, we define a simplified response cost function below:

=750, if 0 = Worm and p = Forward,
®(0,p) =< =50, if 6 = @ and p = Drop,
0, otherwise.

In practice, the response cost function encodes the prefer-
ences and constraints of the network administrator. While we
provide a response cost function that demonstrates the frame-
work, such a function is typically derived from the expected
damage that can be caused by dropping normal emails and
forwarding infected emails as well as other considerations.



We consider an email server with an inaccurate but fast
malware detection technique as well as an accurate but slow
malware detection technique. The email server can gather
more information about whether or not the email is a threat
by performing some sequence of detection techniques. Con-
sequently, we define the set of detection actions as follows:

A = {WeakDetect, StrongDetect}.

Although we do not assume a particular implementation,
these detection techniques could reflect a signature-based de-
tection technique or a behavior-based technique in practice.
All malware detection techniques can generate several
measurements for emails that enter the network. Each mea-
surement corresponds to a level of confidence based on
whether or not the email is a threat. A higher confidence score
indicates a higher likelihood of an email having a worm and
vice versa. Hence, we define the set of measurements below:

M = {Low, Medium, High}.

Every malware detection technique is associated with some
overhead. In our example, the cost of a detection technique
represents a number of different factors, such as its impact
on the performance of the network, any privacy violations,
as well as power consumption overhead. We assume that
the inaccurate detection technique has a low overhead be-
cause of low execution requirements and the accurate detec-
tion technique has a high overhead due to high execution re-
quirements. Given a detection action § € A, we provide a
simplified detection cost function as follows:

w(5) = —1, if & = WeakDetect,
| =5, if 6 = StrongDetect.

As discussed earlier, the response cost function reflects the
actual specifications of each detection action. In practice, it is
possible to approximate the detection cost function from the
expected execution time, the expected power consumption,
and many other characteristics of each detection action.

Each malware detection technique offers a different degree
of accuracy. If we assume that the inaccurate detection tech-
nique is solely based on the signature of the email worm, it
will only perform well with known email worms. As a result,
this detection technique would be less likely to emit measure-
ments that reflect the true status of the email worm. Given the
weak detection action § = WeakDetect, we provide an ideal-
ized accuracy profile below:

0.4, if 8 = Worm and i = Low,

0.6, if 0 = Worm and . = High,
A0,6, 1) =1<0.9, if 0 = and u = Low,

0.1, if 0 = @ and = High,

0, otherwise.

However, if we assume that the accurate malware detection
technique analyzes the behavior of the email worm, it will
remain effective with unknown or little known email worms.
Hence, this detection technique would be more likely to emit
measurements that reflect the true status of the email worm.

Given the strong detection action & = StrongDetect, we offer
an idealized accuracy profile as follows:

0.1, if 6 = Worm and j1 = Low,

0.2, if 6 = Worm and p = Medium,
0.7, if 6 = Worm and p = High,

0.9, if 6 =9 and = Low,

0.05, if 6 = @ and p = Medium,

0.05, if 0 = @ and p = High.

Note that this accuracy profile has been designed in the in-

terest of clarity. In practice, it is possible to approximate an
accuracy profile using machine learning methods.

A(0,6,p1) =

6 Experiments

We compare the example automated malware defense system
for email worm detection and response to several standard
techniques that do not explicitly reason about which detection
actions to perform. Each technique therefore always performs
a specific set of detection actions. The set of detection actions
available to each technique is as follows:

1. a WeakDetect action,
2. a StrongDetect action, and
3. a WeakDetect action and a StrongDetect action.

Note that these techniques select the response action that
maximizes the expected cumulative reward given the mea-
surements from the detection actions. As a baseline, we also
consider a technique that selects a response action based on
the initial belief without performing any detection actions.

All experiments run 10,000 simulations that represent a
typical instance of an email worm threat scenario where the
technique must decide whether to forward or drop an email
with an attachment. For the automated malware defense sys-
tem, we execute a process that begins with an initial belief
that indicates whether or not emails generally have worms.
An email that has an attachment is then given to the process.
The process then updates its belief about the email by per-
forming a sequence of email worm detection action. After
attaining a sufficient belief about the email or performing all
email worm detection actions, the process can respond to the
email by forwarding or dropping it. The simulation termi-
nates once the process has responded to the email.

As discussed earlier, the automated malware defense sys-
tem makes decisions based on the optimal policy graph of the
POMDP. We construct the policy graph using the Incremen-
tal Pruning algorithm [Zhang and Liu, 1996; Cassandra et
al., 1997; Feng and Zilberstein, 2004]. Incremental pruning
is a method that prunes the dominated alpha vectors of each
action individually. Once all actions have been examined, the
optimal policy graph is extracted from the remaining alpha
vectors. We use a standard open source C implementation
of state-of-the-art solvers, pomdp-solve, for the Incremental
Pruning algorithm [Cassandra et al., 1997]. It is also possible
to use a wide range of methods to construct the policy graph,
such as Sondik’s One-Pass Algorithm [Sondik, 1971], the
Witness algorithm [Littman, 1994], and Point-based Value It-
eration [Pineau et al., 2003]. Since the policy graph is already
optimal, this choice does not affect our results.



20 1 D T T TR

151 :.' —————————

------- No DETECTION
=== WEAK DETECTION

-==' STRONG DETECTION

--= WEAK & STRONG DETECTION
—— BELIEF-SPACE PLANNING

10 1

Average Cumulative Cost

T

0.00 ().'()2 ().b4 ().i]ﬁ 0.08 0.'1() ()4'12 ().i4
P(Worm)

Figure 1: The average cumulative cost of our approach and the stan-
dard techniques on different threat scenarios.

Figure 1 depicts the average cumulative cost of the auto-
mated malware defense system and the four standard tech-
niques on a wide range of threat scenarios. Each threat sce-
nario represents a different probability of an email with a
worm entering the system. For instance, when P(Worm) =
0.14, the system has a 14% chance of encountering an in-
fected email. Note that our approach has the lowest average
cumulative cost across every threat scenario.

Figure 2 illustrates the optimal policy graph of the POMDP
used by the automated malware defense system. Each node
represents an action where the W, S, F, and D nodes denote
the WeakDetect, StrongDetect, Forward, and Drop actions re-
spectively. The F and D nodes are terminal in that the system
can no longer perform additional actions. Each edge repre-
sents an observation where the L, M, and H edges denote the
Low, Medium, and High measurements respectively. Note
that the initial belief state of the system specifies the starting
node of the policy graph. The marked node is associated with
a uniform initial belief state.

7 Discussion

On all threat scenarios, the automated malware defense sys-
tem performs at least as well as every standard technique in
Figure 1. For threat scenarios with a worm probability be-
tween roughly 1% to 4% and 10% to 15%, our approach has
a significantly lower average cumulative cost than all tech-
niques. Interestingly, for threat scenarios with a worm prob-
ability between roughly 0% to 1% and 4% to 10%, our ap-
proach has the same average cumulative cost as the technique
that does not use any detection action and the technique that
always uses the strong detection action respectively. Because
the probability of encountering a worm cannot be known in
advance, it is always beneficial to use our approach given that
it performs as well if not better than all standard techniques.
The automated malware defense system makes decisions
using the policy graph in Figure 2. While our approach can
start with any arbitrary initial belief state, we consider the
uniform belief state associated with the marked node as the
starting node. The behavior of our approach is intuitive. Af-
ter the system performs the WeakDetect action, it executes
the Drop action if a High observation is emitted or executes
the StrongDetect action if a Low observation is emitted. If
the StrongDetect action emits a Medium or High observation,

H
H
M
()=
L U M/H
L
H
H
L
M/H
L

Figure 2: The optimal policy graph used by our approach.

the system performs the Drop action. Otherwise, the system
performs the Forward action. Note that the other nodes are
visited given different initial belief states.

Using belief-space planning in automated malware defense
offers a wide range of benefits. First, using a POMDP ob-
viates the need for potentially error-prone security systems
that are carefully crafted by researchers and practitioners.
Next, even if it is possible to develop an adequate security
system by hand, the optimal policy of a POMDP guaran-
tees the best possible trade-off between using malware detec-
tion techniques and impacting the system. Finally, because
the policy graph of the optimal policy is complex even for
a small number of actions and observations, it will likely be-
come difficult—if not infeasible—to design effective security
systems by hand for more realistic problems. Using belief-
spacing planning therefore increases the effectiveness and re-
duces the overhead of security systems.

8 Conclusion

We offer a novel belief-space planning approach to automated
malware defense designed for robust, accurate, and efficient
use in large networks of resource-constrained devices. It of-
fers many advantages over prevailing methods: not only does
it offer more effective information security, but it also re-
duces the impact on the performance of a system. Finally, to
show that our approach yields effective automated malware
defense, we show in simulation that it outperforms standard
security techniques that have been deployed in practice. Fu-
ture work will conduct experiments on real systems and ex-
plore machine learning methods that can be used to generate
accuracy profiles for malware detection techniques.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments. This work was supported in part by the National Sci-
ence Foundation grants IIS-1405550 and IIS-1724101.



References

[Cassandra ef al., 1997] Anthony Cassandra, Michael L.
Littman, and Nevin L. Zhang. Incremental pruning: A
simple, fast, exact method for partially observable Markov
decision processes. In Thirtieth Conference on Uncer-
tainty in Artificial Intelligence, pages 54-61. Morgan
Kaufmann Publishers Inc., 1997.

[Cesare et al., 2013] Silvio Cesare, Yang Xiang, and Wanlei
Zhou. Malwise: An effective and efficient classification
system for packed and polymorphic malware. IEEE Trans-
actions on Computers, 62(6):1193-1206, 2013.

[Faruki et al., 2015] Parvez Faruki, Vijay Laxmi, Ammar
Bharmal, Manoj Singh Gaur, and Vijay Ganmoor. An-
drosimilar: Robust signature for detecting variants of an-
droid malware. Journal of Information Security and Ap-
plications, 22:66-80, 2015.

[Feng and Zilberstein, 2004] Zhengzhu Feng and Shlomo
Zilberstein. Region-based incremental pruning for
POMDPs. In Twentieth Conference on Uncertainty in Ar-
tificial Intelligence, pages 146—153. AUAI Press, 2004.

[Kaelbling ef al., 1998] Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial
Intelligence, 101(1-2):99-134, 1998.

[Littman, 1994] Michael L. Littman. The Witness algorithm:
Solving partially observable Markov decision processes.
Brown University, Providence, RI, 1994.

[Masud et al., 2006] Mohammad M. Masud, Latifur Khan,
and Ehab Al-Shaer. Email worm detection using Naive
Bayes and support vector machine. In International Con-

ference on Intelligence and Security Informatics, pages
733-734. Springer, 2006.

[Nelms et al., 2015] Terry Nelms, Roberto Perdisci, Manos
Antonakakis, and Mustaque Ahamad. Webwitness: Inves-
tigating, categorizing, and mitigating malware download
paths. In USENIX Security Symposium, pages 1025-1040,
2015.

[Pineau et al., 2003] Joelle Pineau, Geoff Gordon, and Se-
bastian Thrun. Point-based Value Iteration: An anytime
algorithm for POMDPs. In Eighteenth International Joint
Conference on Artificial Intelligence, pages 1025-1032,
2003.

[Ruiken et al., 2016] Dirk Ruiken, Tiffany Q. Liu, Takeshi
Takahashi, and Roderic A. Grupen. Reconfigurable tasks
in belief-space planning. In Sixteenth International Con-
ference on Humanoid Robots, pages 1257-1263. 1EEE,
2016.

[Schechter et al., 2004] Stuart E. Schechter, Jaeyeon Jung,
and Arthur W. Berger. Fast detection of scanning worm
infections. In International Workshop on Recent Advances
in Intrusion Detection, pages 59-81. Springer, 2004.

[Shafiq and Liu, 2017] Zubair Shafiq and Alex Liu. A graph
theoretic approach to fast and accurate malware detection.
In IFIP Networking Conference and Workshops, pages 1—
9. 1EEE, 2017.

[Sondik, 1971] Edward Jay Sondik. The optimal control of
partially observable Markov processes. Technical report,
Stanford University, 1971.

[Tanaka ef al., 2017] Yasuyuki Tanaka, Mitsuaki Akiyama,
and Atsuhiro Goto. Analysis of malware download sites
by focusing on time series variation of malware. Journal
of Computational Science, 22:301-313, 2017.

[Tian er al., 2010] Ronghua Tian, Rafiqul Islam, Lynn Bat-
ten, and Steve Versteeg. Differentiating malware from
cleanware using behavioural analysis. In Fifth Interna-
tional Conference on Malicious and Unwanted Software,
pages 23-30. IEEE, 2010.

[Tuvell and Venugopal, 2017] George Tuvell and Deepak
Venugopal. Malware detection system and method for mo-
bile platforms, 2017. US Patent 9,576,131.

[Wray et al., 2016] Kyle H. Wray, Luis Pineda, and Shlomo
Zilberstein. Hierarchical approach to transfer of control in
semi-autonomous systems. In Tiwenty-fifth International

Joint Conference on Artificial Intelligence, pages 517—
523, 2016.

[Wray et al., 2017] Kyle H. Wray, Stefan J. Witwicki, and
Shlomo Zilberstein. Online decision-making for scalable
autonomous systems. In Twenty-sixth International Joint
Conference on Artificial Intelligence, pages 4768-4774,
2017.

[You and Yim, 2010] Ilsun You and Kangbin Yim. Malware
obfuscation techniques: A brief survey. In International
Conference on Broadband, Wireless Computing, Commu-
nication and Applications, pages 297-300. IEEE, 2010.

[Zhang and Liu, 1996] Nevin L. Zhang and Wenju Liu. Plan-
ning in stochastic domains: Problem characteristics and
approximation. Technical report, Hong Kong University
of Science and Technology, 1996.



