Ethically Compliant Sequential Decision Making

Justin Svegliato

Samer B. Nashed

Shlomo Zilberstein

College of Information and Computer Sciences
University of Massachusetts Amherst
{jsvegliato,snashed,shlomo} @cs.umass.edu

Abstract

Enabling autonomous systems to comply with an ethical the-
ory is critical given their accelerating deployment in domains
that impact society. While many ethical theories have been
studied extensively in moral philosophy, they are still chal-
lenging to implement by developers who build autonomous
systems. This paper proposes a novel approach for building
ethically compliant autonomous systems that optimize com-
pleting a task while following an ethical framework. First, we
introduce a definition of an ethically compliant autonomous
system and its properties. Next, we offer a range of ethical
frameworks for divine command theory, prima facie duties,
and virtue ethics. Finally, we demonstrate the accuracy and
usability of our approach in a set of autonomous driving sim-
ulations and a user study of planning and robotics experts.

Introduction

Enabling autonomous systems to comply with an ethical
theory is critical given their accelerating deployment in do-
mains that impact society (Charisi et al. 2017). For example,
a self-driving car that drives a route ought to slow near a
school zone, crosswalk, or park to avoid endangering pedes-
trians (Svegliato et al. 2019; Basich et al. 2020). Similarly,
an elder care robot that helps caregivers perform medical di-
agnostics ought to tailor its support based on the physical
and mental state of the patient to reduce the risk of injury
and the loss of dignity (Shim, Arkin, and Pettinatti 2017).
While many ethical theories have been studied extensively
in moral philosophy, they are still challenging to implement
by developers who build autonomous systems. Hence, there
is a growing need to simplify and standardize the process of
implementing an ethical theory within autonomous systems.

A simple approach to enabling an autonomous system
to comply with an ethical theory is to modify its objective
function directly. Modifying this objective function, how-
ever, poses two problems. First, adjusting the objective func-
tion can lead to unpredictable effects on the behavior of the
autonomous system due to the complexity of its decision-
making model. In fact, small changes to the objective func-
tion can generate large changes to the behavior of the au-
tonomous system (Bostrom 2016). Second, using the objec-
tive function to represent both a task and an ethical theory
can result in incommensurable conversions as it blends them
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within the decision-making model implicitly (Taylor et al.
2016). These problems cause the behavior of an autonomous
system to fail to reflect the intentions of developers or the
values of stakeholders (Hadfield-Menell and Hadfield 2019).

Ideally, any developer who builds an autonomous system
with the ability to comply with an ethical theory could in-
stead use an approach that exhibits several desirable prop-
erties. First, it should be general-purpose by supporting any
task or ethical theory as long as they can be represented ap-
propriately. Next, it should be modular by encapsulating the
task and ethical theory as separate modules that avoid an ob-
jective function that blends them implicitly. Finally, it should
be interpretable by describing the ethical theory in terms of
the behavior and environment of the autonomous system.

We propose a novel approach with these properties for
building ethically compliant autonomous systems that op-
timize completing a task subject to following an ethical
framework. As expected, the task defines the goal that the
system must achieve using a decision-making model. More
importantly, the ethical framework approximates a well-
known ethical theory that the system must comply with us-
ing a moral principle and an ethical context. The moral prin-
ciple evaluates whether or not the system violates the eth-
ical framework and the ethical context includes the con-
textual information needed to evaluate the system. For-
mally, this is expressed as an optimization problem with
a set of constraints for the task and a constraint for the
ethical framework. While our approach supports different
decision-making models and ethical frameworks, we con-
sider a Markov decision process as the decision-making
model and divine command theory, prima facie duties, and
virtue ethics as the ethical frameworks in this paper.

We evaluate our approach in two ways. In a set of au-
tonomous driving simulations, we observe that our approach
produces optimal behavior that meets a set of moral require-
ments. In a user study, we find that planning and robotics
experts who use our approach to produce optimal behavior
that meets a set of moral requirements make fewer develop-
ment errors and need less development time than a simple
approach that modifies the decision-making model directly.

Our contributions are: (1) a definition of an ethically com-
pliant autonomous system and its properties, (2) a range of
ethical frameworks for divine command theory, prima facie
duties, and virtue ethics, and (3) a set of autonomous driving
simulations and a user study of planning and robotics experts
that show the accuracy and usability of our approach.



Related Work

Autonomous systems perform an array of tasks in diverse
social contexts. Their potential harms can be mitigated
via many strategies: (1) abandonment of technologies that
are likely to be abused from a historical context (Browne
2015), such as facial recognition (Brey 2004; Introna and
Wood 2004) and online surveillance (Zimmer 2008; Burg-
ers and Robinson 2017), (2) legal intervention that enforces
oversight to discourage or prevent malevolent or negligent
use (Raymond and Shackelford 2013; Scherer 2015; Good-
man and Flaxman 2017; Desai and Kroll 2017), including
metaregulation (Pasquale 2017), and (3) technical advances
that improve the accuracy and interpretability of algorithms.
While these strategies are important, our approach focuses
on a different strategy that reduces the likelihood for error
during the design and development of autonomous systems.

Similarly, there are various principles (Friedman, Kahn,
and Borning 2008; Boden et al. 2017), guidelines (Fallman
2003; Robertson et al. 2019), and standards (Read et al.
2015; Adamson, Havens, and Chatila 2019) that have re-
cently been proposed to lower the chance for error during the
design and development of autonomous systems. However,
though critical to promoting the intentions of developers or
the values of stakeholders, they do not address implement-
ing an ethical theory within autonomous systems. In fact,
autonomous systems that try to satisfy a set of moral require-
ments only through careful construction, called implicit eth-
ical agents, may not produce ethical behavior (Moor 2006).
Hence, many autonomous systems must be explicit ethical
agents capable of some notion of moral reasoning (Bench-
Capon and Modgil 2017; Dignum et al. 2018).

Efforts to build autonomous systems that are explicit eth-
ical agents take two approaches (Allen, Smit, and Wallach
2005). Bottom-up approaches produce ethical behavior by
gradually evolving or learning in an environment that re-
wards and penalizes behavior (Anderson, Anderson, and
Berenz 2017; Shaw et al. 2018). Although this is com-
pelling given the natural development of ethical ideas in
society, they can lack stability or interpretability. Hence,
top-down approaches produce ethical behavior by directly
following prescriptive rules provided by a human or an
ethical theory. These methods often use different logics,
such as deontic logic (van der Torre 2003; Bringsjord, Ark-
oudas, and Bello 2006), temporal logic (Wooldridge and Van
Der Hoek 2005; Atkinson and Bench-Capon 2006; Dennis
et al. 2016), answer set programming (Berreby, Bourgne,
and Ganascia 2015), or planning formalisms (Dennis et al.
2016). Some methods even use metareasoning over many
logics (Bringsjord et al. 2011). While we offer a top-down
approach in this paper, we do not employ logics since they
are challenging to use given the growing complexity of au-
tonomous systems (Abel, MacGlashan, and Littman 2016).

A common top-down approach that addresses the com-
plexity of autonomous systems uses an ethical governor
to determine online whether an action is required, permit-
ted, or prohibited (Arkin 2008). Applications include el-
dercare (Shim, Arkin, and Pettinatti 2017) and physical
safety (Winfield, Blum, and Liu 2014; Vanderelst and Win-
field 2018). However, an ethical governor is myopic because

it only considers the immediate reaction that must be made
by the system at each time step. In contrast, our approach
is nonmyopic since it reasons about the sequence of actions
that must be performed by the system over every time step.

We know of only one other nonmyopic top-down ap-
proach to explicit ethical agents (Kasenberg and Scheutz
2018). However, the approach cannot represent different
ethical theories, such as utilitarianism or Kantianism, be-
cause it is specific to norms. Moreover, the approach can-
not guarantee ethical behavior since both task completion
and ethical compliance are defined by real-valued weights.
Our approach instead produces desirable behavior that com-
plies with different ethical theories and avoids unpredictable
trade-offs between task completion and ethical compliance.

Background

A Markov decision process (MDP) is a decision-making
model for reasoning in fully observable, stochastic environ-
ments (Bellman 1952). An MDP can be described as a tuple
(S, A, T, R,d), where S is a finite set of states, A is a fi-
nite set of actions, 7" : S x A x S — [0, 1] represents the
probability of reaching a state s’ € S after performing an
actiona € Ainastates € S, R: S x A x S — R rep-
resents the expected immediate reward of reaching a state
s’ € S after performing an action a € A in a state s € S,
and d : S — [0,1] represents the probability of start-
ing in a state s € S. A solution to an MDP is a policy
m : S — A indicating that an action 7(s) € A should be
performed in a state s € S. A policy 7 induces a value func-
tion V™ : S — R representing the expected discounted cu-
mulative reward V7 (s) € R for each state s € S given a
discount factor 0 < v < 1. An optimal policy 7* maxi-
mizes the expected discounted cumulative reward for every
state s € S by satisfying the Bellman optimality equation
V*(s) = maxaea ) g T(s,a,5")[R(s,a,s)+yV*(s")].

A common approach for finding an optimal policy ex-
presses the optimization problem as a linear program in ei-
ther the primal form or the dual form (Manne 1960). In this
paper, we propose ethical frameworks that naturally map to
the dual form. The dual form maximizes a set of occupancy
measures /i, for the discounted number of times an action
a € Ais performed in a state s € S subject to a set of con-
straints that maintain consistent and nonnegative occupancy.

max E g ,u;E R(s,a,s")
" s€Saea  ses

s.t. Z s = d(s) + 72 Z T(s,a,s s Vs

a’'€A seSacA
o >0 Vs, a

Ethically Compliant Autonomous Systems

We propose a novel approach for building ethically compli-
ant autonomous systems that decouples ethical compliance
from task completion. The system optimizes completing a
task by using a decision-making model subject to follow-
ing an ethical framework by adhering to a moral principle
within an ethical context. We describe these attributes of an
ethically compliant autonomous system below.



First, the system has a decision-making model that de-
scribes the information needed to complete the task. For ex-
ample, a self-driving vehicle could have a decision-making
model that includes a map of a city (Basich et al. 2021).
A developer must select a representation for the decision-
making model that reflects the properties of the task. For
many tasks, an MDP, a decision process that assumes full
observability, can be used easily. However, for more com-
plex tasks with partial observability, start and goal states, or
multiple agents, it is possible to use a decision process like
a partially observable MDP, a stochastic shortest path prob-
lem, or a decentralized MDP instead. In short, the decision-
making model is an amoral, descriptive model for complet-
ing the task but not following the ethical framework.

Next, the system has an ethical context that describes
the information required to follow the ethical framework.
For instance, an autonomous vehicle could have an ethi-
cal context that includes any details related to inconsider-
ate or hazardous driving that permit speeding on a highway
in some scenarios but never around a school zone or near
a crosswalk (Vanderelst and Winfield 2018). Similar to the
decision-making model, a developer must select a represen-
tation for the ethical context that informs the fundamental
principles of the ethical framework. Although the ethical
context can be represented as a tuple of different values,
sets, and functions, the particular specification of the tuple
depends on the ethical framework. In brief, the ethical con-
text is a moral, prescriptive model for following the ethical
framework but not completing the task.

Finally, the system has a moral principle that evaluates the
morality of a policy for the decision-making model within
the ethical context. This considers the information that de-
scribes how to both complete the task and follow the ethical
framework. As an illustration, a moral principle could re-
quire a policy to maximize the well-being of the moral com-
munity in utilitarianism (Bentham 1789; Mill 1895) or uni-
versalize to the moral community without contradiction in
Kantianism (Kant and Schneewind 2002). Given a decision-
making model and an ethical context, a developer must ex-
press the moral principle as a general function that maps a
policy to its moral status in the following way.

Definition 1. A moral principle, p : 11 — B, represents
whether a policy m € 11 of a decision-making model D is
moral or immoral within an ethical context £.

Now, putting these attributes together, we offer a descrip-
tion of an ethically compliant autonomous system below.

Definition 2. An ethically compliant autonomous system,
(D, &, p), optimizes completing a task by using a decision-
making model D while following an ethical framework by
adhering to a moral principle p within an ethical context .

An ethically compliant autonomous system has the ob-
jective of finding an optimal policy that completes its task
and follows its ethical framework. This can naturally be ex-
pressed as an optimization problem that solves for a policy
within the space of policies that maximizes the value of the
policy subject to the constraint that the policy satisfies the
moral principle. We now turn to a description of the objec-
tive of an ethically compliant autonomous system below.
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Figure 1: A simple view of the goal of an ethically compli-
ant autonomous system (green) and the goal of a standard
autonomous system (red) in terms of the space of policies.

Definition 3. The objective of an ethically compliant au-
tonomous system is to find an optimal moral policy, 7, € 11,
by solving for a policy m € 11 within the space of policies
IT that maximizes a value function V™ subject to a moral
principle p in the following optimization problem.

maximize V7™
well

subjectto p(m)

The objective of a standard autonomous system has typically
been to find an optimal amoral policy, 7* € 1I, that only
completes its task without following any ethical framework.

Figure 1 illustrates the objective of both an ethically com-
pliant autonomous system and a standard autonomous sys-
tem. For a moral principle p, the space of policies II has been
partitioned into a moral region II, and an immoral region
II-,. The moral region II, contains the optimal moral pol-
icy m, € II, of the ethically compliant autonomous system
while the immoral region 11, contains the optimal amoral
policy 7* € II-, of the standard autonomous system. In
general, the optimal amoral policy 7* € II can be contained
by either the moral region II, or the immoral region II_,.

An ethically compliant autonomous system may follow
an ethical framework that negatively impacts completing its
task. In this situation, a developer can evaluate the cost of
this impact by calculating the maximum difference across
all states between the value function of the optimal moral
policy and the value function of the optimal amoral policy.
We describe this idea more formally below.

Definition 4. Given the optimal moral policy 7, € 1l and
the optimal amoral policy * € 11, the price of morality, 1),
can be represented by the expression 1) = ||[V™ — V™ |

oo

In fact, an ethically compliant autonomous system may
even follow an ethical framework that is mutually exclu-
sive with completing its task. In this situation, a developer
should reconsider the moral implications of the system and
could augment the decision-making model or adjust the eth-
ical context if deemed safe. Intuitively, the system can be
called either feasible or infeasible depending on whether or
not there is a solution to the optimization problem. We ex-
press this notion more formally below.

Definition 5. An ethically compliant autonomous system is
realizable if there exists a policy m € 11 such that its moral
principle p(w) is satisfied. Otherwise, it is unrealizable.
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Table 1: The moral constraints that have been derived from the moral principle of each ethical framework.

Naturally, to find the optimal moral policy by solving the
optimization problem of an ethically compliant autonomous
system, we use mathematical programming. This process in-
volves four steps. First, the moral principle is mapped to a
moral constraint in terms of the occupancy measures of a
policy. We show that this mapping can be performed below.

Theorem 1. A moral principle, p : 11 — B, can be ex-
pressed as a moral constraint c,(p) in terms of the matrix of
occupancy measures [ for a given policy m € 1L

Proof (Sketch) 1. We start with a moral principle p(r) us-
ing a deterministic or stochastic policy 7(s) or w(als). First,
recall that the discounted number of times that an action a €
A is performed in a state s € S is an occupancy measure
Wa. Next, observe that the discounted number of times that a
state s € S is visited is the expression )y 4 ;. Finally, a

policy m(s) or w(als) is thus argmaxge 4 115/ Y uea 1o
or 1/ > ae a - Therefore, by substitution, we end with a
moral constraint c,(i) that maps to a moral principle p(7).

Second, the moral principle is considered either linear or
nonlinear depending on the form of its moral constraint. If
the moral constraint is linear in the occupancy measures of a
policy, the moral principle is linear. Otherwise, it is nonlin-
ear. Although we use linear moral principles for the ethical
theories considered in this paper, it is possible to use non-
linear moral principles for ethical theories like utilitarianism
and Kantianism. We formalize this property below.

Definition 6. A moral principle, p : 11 — B, is linear if it
can be expressed as a moral constraint c, () that is linear
with respect to the matrix of occupancy measures | for a
given policy w € 11. Otherwise, it is nonlinear.

Third, the optimization problem is described as mathe-
matical program. As expected, to represent task completion,
following the linear program of an MDP in the dual form, the
program maximizes a set of occupancy measures p; for the
discounted number of times an action a € A is performed
in a state s € .S subject to a set of constraints that maintain
consistent and nonnegative occupancy. More importantly, to
represent ethical compliance, the program uses a moral con-
straint ¢, () derived from the moral principle p(7) given a
matrix of occupancy measures p for a policy 7.

Fourth, the mathematical program is solved to find the
optimal moral policy. Given a linear moral principle, it can
be solved with linear programming techniques, such as the
simplex method or the criss-cross algorithm (Bertsimas and
Tsitsiklis 1997). However, given a nonlinear moral prin-
ciple, it can be solved with nonlinear programming tech-
niques (Bertsekas 1997). Note that this four-step process can
also be used with the primal form of the linear program.

Ethical Frameworks

In this section, we offer a range of ethical frameworks that
can be used to build an ethically compliant autonomous sys-
tem. Each ethical framework approximates a well-known
ethical theory in moral philosophy (Shafer-Landau 2009).
During the design of an ethical framework, a developer must
select a representation for the ethical context and the moral
principle. This involves choosing the contextual details of
the ethical context and the logical structure of the moral prin-
ciple that best describe the moral implications of the system.

Table 1 offers the moral constraints that have been derived
from the moral principle of each ethical framework. For each
moral constraint, there are several columns that describe its
computational tractability. The Type column lists whether
the moral constraint is linear or nonlinear with respect to the
occupancy measures of a policy. The Conjunctions column
states the number of logical conjunctions that compose the
moral constraint. The Operations column indicates an upper
bound on the number of arithmetic, comparison, and logical
operations that must be performed for each logical conjunc-
tion. The Computations column contains an upper bound on
the number of computations that must be executed for the
moral constraint to evaluate the moral status of a policy.

We present a set of simplified ethical frameworks exam-
ples below. Their purpose is to encode an ethical theory in a
tractable way that may not capture all nuances of an ethical
theory. We encourage work on more complex ethical frame-
works that reflect the nuances of different ethical theories.

Divine Command Theory

Divine command theory (DCT), a monistic, absolutist eth-
ical theory, holds that the morality of an action is based
on whether a divine entity commands or forbids that ac-
tion (Idziak 1979; Quinn 2013). Similar to earlier work on
dead ends (Kolobov, Mausam, and Weld 2012), we consider
an ethical framework that requires a policy that selects ac-
tions that have a nil probability of transitioning to any for-
bidden state (Mouaddib, Jeanpierre, and Zilberstein 2015).

Definition 7. A DCT ethical context, £r, is represented by
a tuple, Ex = (F), where F is a set of forbidden states.

Definition 8. A DCT moral principle, pr, is expressed as
the following equation:

pr(m) = N\ (T(s,7(s). f) =0).
sES, feF

Note that the DCT moral constraint c,,. in Table 1 needs
2|S||A||F'| computations in the worst case because 2 opera-
tions are performed in |S||A||F'| conjunctions.



Prima Facie Duties

Prima facie duties (PFD), a pluralistic, nonabsolutist ethi-
cal theory, holds that the morality of an action is based on
whether that action fulfills fundamental moral duties that
can contradict each other (Ross 1930; Morreau 1996). Re-
lated to recent work on norm conflict resolution (Kasenberg
and Scheutz 2018), we consider an ethical framework that
requires a policy that selects actions that do not neglect du-
ties of different penalties within some tolerance.

Definition 9. A PFD ethical context, £, is represented by

atuple, En = (A, &, T), where

e A is a set of duties,

e ¢: AxS — RT is apenalty function that represents the
expected immediate penalty for neglecting a duty 6 € A
ina state s € S, and

» 7 € R* is atolerance.

Definition 10. A PFD moral principle, pa, is expressed as
the following equation:

pa(m) =3 d(s)J7(s) < .

ses
The expected cumulative penalty, J™ : S — R, is below:

T(s) =D T(s,m(s),s)[ Y 68, 8") + T (s')],

s'es 5€AS/
where Ay is the set of duties neglected in a state s' € S.

Note that the PFD moral constraint c,, in Table 1 re-
quires 3|S||A||S]|A| + 1 computations in the worst case as
3|S||A||S||A]41 operations are performed in 1 conjunction.

Virtue Ethics

Virtue ethics (VE), a monistic, absolutist ethical theory,
holds that the morality of an action is based on whether a
virtuous person who acts in character performs that action
in a similar situation (Anscombe 1958; Hursthouse 1999).
Drawing on its natural connection to learning by demonstra-
tion from a human operator with domain expertise (Atkeson
and Schaal 1997), we consider an ethical framework that re-
quires a policy that selects actions that align with any moral
trajectory performed by a moral exemplar.

Definition 11. A VE ethical context, £ 4, is represented by
a tuple, Eng = (M), where M is a set of moral trajectories.

Definition 12. A VE moral principle, p 4, is expressed as
the following equation:

paa(m) = N\ als, m(s).
seS
The alignment function, o : S X A — B, is below:

a(s,a) = Imem o<i<e (s =m(s;) Na = m(ai)),
where m(s;) and m(a;) are the ith state and the ith action of
a moral trajectory m = (Sg, 0, 51,01, .-, 80—1,00—1,S¢)
of length £ < L bounded by a maximum length L.

Note that the VE moral constraint c,,, in Table 1 involves

|S||A|(1 + 3L|M|) computations in the worst case since
14 3L| M| operations are performed in |S||A| conjunctions.

Autonomous Driving

We turn to an application of ethically compliant autonomous
systems to autonomous driving. An ethically compliant self-
driving vehicle must complete a navigation task by driving
from an origin to a destination within a city. However, to fol-
low a given ethical framework, the ethically compliant self-
driving vehicle must adjust its route and speed depending on
the type and pedestrian traffic of each road to avoid harming
people and damaging property. Note that our approach can
be used in many other applications, such as a security robot
that patrols a college campus or a robot assistant that navi-
gates a grocery store to help customers or prevent theft. We
describe how to separate task completion and ethical com-
pliance in an ethically compliant self-driving vehicle below.

Task Completion

The vehicle must complete a navigation task by driving from
a start location Ao € A to a goal location A\, € A along a set
of roads € in a city with a set of locations A. At each location
A € A, the vehicle must turn onto a road w € ). Each road
w € Qisatype v € T that indicates either a city street,
county road, or highway with a low, medium, or high speed
limit. Once the vehicle turns onto a road w € (2, the vehicle
observes the pedestrian traffic § € © as either light or heavy
with a probability Pr(© = 6). After the vehicle observes the
pedestrian traffic § € ©, the vehicle accelerates to a speed
o € X thatreflects either a low, normal, or high speed under,
at, or above the speed limit. To drive along the road w € Q2
from the current location A € A to the next location A’ € A,
the vehicle cruises at the speed o € Y. This is repeated until
the vehicle arrives at the goal location A, € A.

More formally, we represent the decision-making model
of the navigation task by an MDP D = (S, A, T, R, d). The
set of states S = Sp U S has a set of location states Sy
for being at a location A € A and a set of road states S, for
being on a road w € () of a type v € T with a pedestrian
traffic # € O ataspeed o € 3. The set of actions A = Aq U
Ay, U{®, ®} has a set of turn actions Ag, for turning onto a
road w € (), a set of accelerate actions Ay, for accelerating
to a speed 0 € X, a stay action ®, and a cruise action ©.
The transition function T : S x A x S — [0, 1] reflects
the dynamics of a turn action @ € Aq and a stay action ®
in a location state A € S or an accelerate action a € Ay
and a cruise action ® in a road state s € Sq (with a self-
loop for any invalid action a € A). The reward function R :
S x Ax S — Rreflects the duration of a turn action a € Aq
from a location state S to a road state s € Sq, a stay action
® at a location state A € S, an accelerate action a € Ay, at
aroad state s € Sgq, and a cruise action ® from a road state
s € Sq to a location state S (with an infinite duration for
any invalid action a € A and a nil duration for a stay action
® at a state s € S that represents the goal location A, € A).
The start state function d : S — [0, 1] has unit probability at
a state s € S that represents the start location A\g € A and
nil probability at every other state s’ € S.

Ethical Compliance

The vehicle must follow one of the ethical frameworks. First,
the vehicle can follow DCT with forbidden states comprised
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of hazardous states H and inconsiderate states Z. Hazardous
states H contain any road state at high speed and inconsid-
erate states Z contain any road state at normal speed with
heavy pedestrian traffic. With the DCT moral principle pr,
we represent the DCT ethical context by a tuple, Ex = (F),
where F = H U Z is the set of forbidden states.

Next, the vehicle can follow PFD with duties comprised
of smooth operation 61 and careful operation §o. Smooth
operation 01 is neglected in any road state at low speed
with light pedestrian traffic while careful operation d5 is ne-
glected in any road state at high speed or at normal speed
with heavy pedestrian traffic. When smooth operation ¢; and
careful operation J, are neglected, they incur a low and high
penalty that changes with any pedestrian traffic. Neglecting
duties is permitted until a limit e. With the PFD moral prin-
ciple pa, we represent the PFD ethical context by a tuple,
En = (A, ¢, 7), where A = {d1,02} is the set of duties,
¢ : A xS — RT is the penalty function that represents
the expected immediate penalty for neglecting smooth oper-
ation 9; € A and careful operation J; € A in a state s € S
with a pedestrian traffic @ € ©, and 7 = € is the tolerance.

Finally, the vehicle can follow VE with moral trajectories
comprised of cautious trajectories C and proactive trajecto-
ries P. Cautious trajectories C exemplify driving on any road
state at normal speed with light pedestrian traffic or at low
speed with heavy pedestrian traffic and proactive trajectories
‘P exemplify avoiding any highway road states and a set of
populated location states. With the VE moral principle p 4,
we represent the VE ethical context by a tuple, Eoq = (M),
where M = C U P is the set of moral trajectories.

Experiments

We now demonstrate that the application of ethically com-
pliant autonomous systems to autonomous driving is effec-
tive in a set of simulations and a user study.

In the set of simulations, a standard self-driving vehicle
that cannot follow any ethical framework and an ethically
compliant self-driving vehicle that can follow different ethi-
cal frameworks must complete a set of navigation tasks.

Each navigation task can use a different start location
Ao € A and goal location A\, € A based on the city in
Figure 2. The speed limits of city streets, county roads,
and highways are 25, 45, and 75 MPH. The probability
Pr(© = 6) of observing light or heavy pedestrian traffic
0 € ©is 0.8 and 0.2. A low, normal, and high speed is 10
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Figure 3: An agent completes a task and follows an ethical
framework with a blue amoral path and a green moral path
in the Morality.js customizable grid world environment.

MPH under, at, and 10 MPH above the speed limit. Turning
onto aroad w € €) from a location A € A requires 5 seconds.
Accelerating 10 MPH requires 2 seconds. Cruising requires
a time equal to the distance of the road w € 2 divided by
the speed o € 3. Staying at a location A € A other than the
goal location \; € A requires 120 seconds.

Each ethical framework can use different settings. For
DCT, the forbidden states F can be just hazardous states H
or both hazardous states H and inconsiderate states Z. For
PFD, the tolerance 7 = € can be the limit ¢ = 3, ¢ = 6,
or ¢ = 9. For VE, the moral trajectories can be just cau-
tious trajectories C or both cautious trajectories C and proac-
tive trajectories P that avoid any highway road states and a
set of populated location states that contains the School and
College locations with many students on campus.

Table 2 shows that the price of morality incurred by the
agent is appropriate for each ethical framework. The stan-
dard self-driving vehicle does not incur a price of morality.
However, the ethically compliant self-driving vehicle incurs
a price of morality that increases with more forbidden states
for DCT, decreases with more tolerance for PFD, and in-
creases with more moral trajectories for VE.

Figure 5 shows that the behavior performed by the agent
is appropriate for each ethical framework. The standard self-
driving vehicle drives the shortest route at high speed. How-
ever, the ethically compliant self-driving vehicle differs for
each ethical framework. For DCT, the vehicle drives the
shortest route at low or normal speed based on pedestrian
traffic. For PFD, the vehicle drives the shortest route at low



Ethics Setting  TASK I (%) TASK2 (%) TASK 3 (%)
None — 0 0 0
" 1455 1533 20.12
DCT 3071 2113 2235 27.92
p— 16.07 16.52 2430
PFD  ¢=6 11.96 11.80 21,37
=9 7.91 715 18.87
VE C 2113 2235 27.92
CUP 40.89 94.43 30.28

Table 2: The price of morality relative to the value of the op-
timal amoral policy for each vehicle on all navigation tasks.
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Figure 4: The results of the user study. For each task and
location in the city, a point denotes the resulting policy. For
each policy, the horizontal axis is its time savings relative to
the policy from the opposing task while the vertical axis is
its number of violations, averaged over 10 simulations. The
moral and immoral regions are highlighted in green and red.

or normal speed based on pedestrian traffic aside from driv-
ing on the first road at normal or high speed with some prob-
ability for light pedestrian traffic and at normal speed for
heavy pedestrian traffic due to the tolerance. For VE, the
vehicle drives at low or normal speed based on pedestrian
traffic but drives a different route to avoid any highway road
states and the set of populated location states.

In the user study, 7 planning and robotics experts with ex-
perience in MDPs but not ethics had to complete two tasks
that implemented an ethically compliant self-driving vehicle
in a random order. In both tasks, developers were given the
decision-making model for navigating the city from any start
location to the OFFICE location. They then had to enforce
the following moral requirements: the self-driving vehicle
should drive at high speed with light pedestrian traffic or at
normal speed with heavy pedestrian traffic at most once in
expectation but should never drive at high speed with heavy
pedestrian traffic. In one task, developers were asked to en-
force these requirements by modifying the reward function
of the decision-making model, specifically an MDP. In the
other task, developers were asked to enforce these require-
ments by defining the ethical context of an ethical frame-
work, specifically PFD. The user study therefore evaluates
the accuracy and usability of modifying a decision-making
model versus defining an ethical framework.

Figure 4 shows that defining the ethical context of the
ethical framework led to better policies than modifying the
reward function of the decision-making model. In our ap-
proach, all policies optimize the navigation task and satisfy
the requirements with exactly one violation. However, in the

(a)

@ Gray Street @ Service Road @_Sunnsc se Highway @

@ Gray Street @ Service Road @_SmsﬂiMy_ @

@ Gray Street @ Service Road @_Sunnsc se Highway @

Gray Merrick Pleasant State Oak
Street Road Street Street Road

Figure 5: The optimal policies for select vehicles with (a)
no ethical framework, (b) DCT with ‘H U Z, (c) PFD with
€ = 9, and (d) VE with C U P on a navigation task. A blue
node denotes a location and a gray node denotes pedestrian
traffic. With a thickness that represents probability, a gray
line denotes turning onto a road and an orange, green, or
purple line denotes cruising at high, normal, or low speed.

other approach, most policies fail to optimize the navigation
task or satisfy the requirements: aggressive policies in the
upper right corner with more than one violation are faster
but immoral while conservative policies with less than one
violation in the lower left corner are slower but moral. It is
also encouraging that our method (24 minutes) had a lower
mean development time than the other method (45 minutes).
Our open source library, Morality.js, available on the web-
site https://www.moralityjs.com with the customizable grid
world environment dashboard in Figure 3, was used in all
experiments (Svegliato, Nashed, and Zilberstein 2020a,b).

Conclusion

We propose a novel approach for building ethically com-
pliant autonomous systems that optimize completing a task
while following an ethical framework. It simplifies and
standardizes the process of implementing an ethical theory
within autonomous systems as it is general-purpose, modu-
lar, and interpretable. We then offer a range of ethical frame-
works for divine command theory, prima facie duties, and
virtue ethics. Finally, we demonstrate the accuracy and us-
ability of our approach in a set of autonomous driving simu-
lations and a user study of planning and robotics experts. Fu-
ture work will develop nuanced ethical frameworks for the
ethical theories in this paper and explore new ethical frame-
works for ethical theories like utilitarianism and Kantianism.
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Ethics Statement

Although we discuss important ethical considerations sur-
rounding ethically compliant autonomous systems through-
out the paper, we highlight three ethical implications below.

First, we stress that simply defining some ethically com-
pliant autonomous system does not guarantee that it ex-
hibits perfect ethical compliance with respect to its devel-
opers or stakeholders in the real world. In fact, similar to
any autonomous system, the quality of an ethically com-
pliant autonomous system is limited by the accuracy of its
decision-making model, ethical framework, and ethical con-
text. If these attributes have not been specified in a way that
reflects the intentions of its developers or the values of its
stakeholders, the system may still result in undesirable con-
sequences. Moreover, any conflict between stakeholders can
perhaps be resolved using multiple ethical frameworks to-
gether by forming a moral principle that is a conjunction
over the moral principle for each ethical framework. It is
therefore critical that developers seek continual participation
and feedback from a range of stakeholders who interact with
the system in as many diverse situations as possible.

Next, while our approach gives autonomous systems the
ability to satisfy an arbitrary set of moral requirements,
we emphasize that developers must still remain transparent
about the moral requirements of their autonomous systems.
This could be in the form of ethical documentation that spec-
ifies the moral requirements of the autonomous system and
its limitations. For example, if a self-driving vehicle has an
ethical framework that considers the level of pedestrian traf-
fic but not the presence of wildlife along a route, there should
be ethical documentation in the user manual that is provided
to the owners of the vehicle. Hence, by providing ethical
documentation prior to the deployment of the autonomous
system, deployers can ensure that any conditions necessary
for ethical compliance are satisfied throughout operation.

Finally, even though our approach gives autonomous sys-
tem the ability to comply with a given ethical theory, we
highlight that developers must still think carefully about the
design and development of their autonomous systems. This
involves selecting the moral requirements of the autonomous
system, which can include determining the best ethical the-
ory, the best ethical framework for that ethical theory, and
the best settings for that ethical framework. In other words,
our approach does not substitute for the deliberate process
of determining the best way to build an ethically compliant
autonomous system. In fact, developers should avoid inten-
tionally selecting ethically compliant autonomous systems
that are easy to implement in practice. However, as the vast
discourse surrounding the best ethical theory to use in au-
tonomous systems continues to evolve over time, our ap-
proach can be used in a way that reflects this discussion.
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