
Using Metareasoning to Maintain and Restore Safety for Reliably Autonomy

Justin Svegliato , Connor Basich , Sandhya Saisubramanian and Shlomo Zilberstein
University of Massachusetts Amherst

{jsvegliato, cbasich, saisubramanian, shlomo}@cs.umass.edu

Abstract
While developers carefully specify the high-level
decision-making models in autonomous systems,
it is infeasible for these models to ensure safety
across every scenario that can be encountered dur-
ing operation. We therefore propose a safety metar-
easoning system that mitigates the severity of the
system’s safety concerns while reducing the inter-
ference to the system’s task: the system executes
in parallel a task process that completes the task
and safety processes that each address a safety con-
cern, arbitrating with a conflict resolver. This paper
offers a definition of a safety metareasoning sys-
tem, an evaluation rating generation algorithm for
a safety process, a conflict resolution algorithm for
a conflict resolver, an application of our approach
to planetary rover exploration, and a demonstration
that our approach is effective in simulation.

1 Introduction
While planning and robotics experts carefully design, build,
and test the models used by autonomous systems for high-
level decision making, it is infeasible for these models to en-
sure safety across every scenario within the domain of oper-
ation [1]. This is due to the challenge of specifying accurate,
comprehensive decision-making models given the complex-
ity of the state space or the action space, a lack of information
about the environment, or a misunderstanding of the compe-
tence of the autonomous system [2]. For example, a courier
robot could use a decision-making model with features for
safely interacting with different types of doors but not for
navigating a crosswalk, increasing the risk of endangering
people, damaging property, or breaking the courier robot [3].
Therefore, as autonomous systems grow in sophistication [4],
it is critical for researchers and practitioners to give them the
ability to maintain and restore safe operation.

A simple approach to giving an autonomous system the
ability to maintain and restore safety is to use an accurate,
comprehensive decision-making model with every feature
needed to cover every scenario within the domain of oper-
ation. Such an approach, however, suffers from two main
problems in the real world [1]. First, it is simply infeasible
to build this model for complex environments. Second, even
if it were feasible, it would be infeasible to solve this model
with exact or even approximate methods in real-time environ-

Analysis Task Process

Crevice Safety Process

Rough Terrain Safety Process

Dust Storm Safety Process

Conflict Resolver

None: SlowDown: SpeedUp: ShiftLeft: ShiftRight: Stop:

Figure 1: A planetary rover, arbitrating with the conflict re-
solver, runs in parallel an analysis task process designed to
analyze different points of interests within a region of a planet
and safety processes each designed to address either crevices,
rough terrain, or dust storms. The left and right values of each
tuple denote a wheel rotation rate and steering parameter with
green and red denoting safe and unsafe operation.

ments. In short, such an approach cannot be used to maintain
and restore safe operation in an autonomous system.

There are several areas of safety for decision making in au-
tonomous systems that have seen recent attention [4]. First,
methods avoid negative side effects that cause a system to in-
terfere with its environment (e.g., by adding an extra term
to its objective function [5] or modifying its decision-making
model based on human feedback [6]). Next, methods mitigate
reward hacking that cause a system to game its reward func-
tion (e.g., by applying ethical constraints to its behavior [7; 8;
9] or treating its reward function as an observation of its true
objective function [10]). Finally, methods handle distribu-
tional change that cause a system to perform poorly in a new
environment differing from its original environment (e.g., by
detecting anomalies using Monte Carlo methods based on a
particle filter [11; 12; 13] or multiple model estimation based
on neural networks [14; 15]). Ideally, any approach that en-
ables autonomous systems to make decisions that maintain
and restore some notion of safety should address these areas.

We therefore propose a natural approach to safety in au-
tonomous systems that uses metareasoning as shown in Fig-

ure 1. A safety metareasoning system executes in parallel (1)
a task process designed to complete a task and (2) safety pro-
cesses each designed to address a safety concern, arbitrating
with (3) a conflict resolver. First, the task process performs
actions that can be tuned by the parameters recommended
by the safety processes. Second, the safety processes rec-
ommend evaluation ratings over the parameters that can tune
the actions performed by the task process. Third, the conflict
resolver selects the parameters to tune the actions performed
by the task process given the evaluation ratings over the pa-
rameters recommended by the safety processes. In short, for
each time step, the task process performs an action, the safety
process recommends evaluation ratings over the parameters
of that action, and the conflict resolver selects the parameter
to tune that action. Our experiments on a planetary rover ex-
ploration domain show that the system mitigates the severity
of safety concerns while reducing interference to the task.

Our main contributions in this paper are: (1) a definition of
a safety metareasoning system, (2) an evaluation rating gen-
eration algorithm for a safety process, (3) a conflict resolution
algorithm for a conflict resolver, (4) an application of our ap-
proach to planetary rover exploration, and (5) a demonstra-
tion that our approach is effective in simulation.

2 Background
A Markov decision process (MDP) is a decision-making
model for reasoning in fully observable, stochastic envi-
ronments [16; 17]. An MDP can be described as a tuple
〈S,A, T,R〉. The set of states is S. The set of actions is
A. The transition function T : S × A × S → [0, 1] repre-
sents the probability of reaching a state s′ ∈ S after perform-
ing an action a ∈ A in a state s ∈ S. The reward function
R : S × A → R represents the expected immediate reward
of performing an action a ∈ A in a state s ∈ S. A solution
to an MDP is a policy π : S → A indicating that an action
π(s) ∈ A should be performed in a state s ∈ S. A policy π in-
duces a value function V π : S → R representing the expected
discounted cumulative reward V π(s) ∈ R for each state
s ∈ S given a discount factor 0 ≤ γ < 1. An optimal policy
π∗ maximizes the expected discounted cumulative reward for
each state s ∈ S by meeting the Bellman optimality equation
V ∗(s) = maxa∈A

[
R(s, a) + γ

∑
s′∈S T (s, a, s′)V ∗(s′)

]
.

Value iteration is a common technique for finding an opti-
mal policy π∗ of an MDP 〈S,A, T,R〉. It begins with an op-
timal 0-horizon value function V ∗0 . It then builds an optimal
(t+1)-horizon value function V ∗t+1 from an optimal t-horizon
value function V ∗t by using the Bellman backup operator,
V ∗t+1 = maxa∈A

[
R(s, a) + γ

∑
s′∈S T (s, a, s′)V ∗t (s′)

]
, for

each time step t until the condition ‖Vt+1 − Vt‖∞ < ε (1−γ)
γ

is satisfied for a given convergence limit ε. As each consecu-
tive optimal finite horizon value function V ∗t+1 is constructed
from the current optimal finite horizon value function V ∗t , it
approaches the optimal infinite horizon value function V ∗ as
the time step t approaches the infinite horizon h =∞:

lim
t→∞

max
s∈S
|V ∗(s)− V ∗t (s)| = 0.

Note the Bellman optimality equation can be applied to any
state in any order as long as no state is starved indefinitely.

3 Metareasoning for Safety
We now propose a novel metareasoning approach, a safety
metareasoning system, that runs in parallel (1) a task process
that completes a task and (2) safety processes that each ad-
dress a safety concern, arbitrating with (3) a conflict resolver.

First, the task process performs an action in its current state
following its policy where the action can be tuned by a pa-
rameter recommended by the safety processes. For instance,
a planetary rover could execute a task process for analyzing
soil and rock samples at different points of interest within a
region of a planet. The task process representation must re-
flect the properties of the task. The task process in this paper
is represented by an MDP, a decision process for tasks with
full observability, because it is a standard general-purpose
sequential decision-making model used throughout planning
and robotics. However, it is also possible to use other types of
decision processes for tasks with partial observability or start
and goal states. We define a task process below.
Definition 1. A task process, Υ = 〈S,A, T,R〉, performs an
action at = π(st) ∈ A in a state st ∈ S at a time step t ≤ H
following a policy π to complete a given task.

Second, a safety process recommends an evaluation rating
over a set of parameters in its current state where each param-
eter can tune the action performed by the task process. For ex-
ample, a planetary rover could execute three safety processes
for crevices inhibiting its wheels, dust storms destroying its
sensitive sensors, and rough terrain damaging its wheels. The
safety process representation is a tuple with several important
attributes: a set of states that describe the safety concern, a
set of parameters that can tune the action performed by the
task process, a transition function that reflects the dynamics
between a state, a parameter, and a successor state, a sever-
ity function that reflects the severity of the safety concern in
a state, and an interference function that indicates the inter-
ference of a parameter on the action performed by the task
process. We define a safety process below.
Definition 2. A safety process, θ = 〈S̄, P̄ , T̄ , φ, ψ〉 ∈ Θ,
recommends an evaluation rating ρθs̄t̄ over a set of parameters
P̄ in a state s̄t ∈ S̄ at a time step t̄ ≤ H̄ to address a given
safety concern that can be encountered during operation.

• S̄ is a set of states that describe the safety concern.
• P̄ = P̄1 × P̄2 × · · · × P̄N is a set of parameters such

that each parameter factor P̄i can tune the action a ∈ A
performed by the task process Υ in some way with a
∅ ∈ P̄i parameter that indicates no tuning.

• T̄ : S̄× P̄ × S̄ → [0, 1] is a transition function that rep-
resents the probability of reaching a state s̄′ ∈ S̄ after
using a parameter p̄ ∈ P̄ in a state s̄ ∈ S̄.

• φ : S̄ → {1, 2, . . . , L} is a severity function that repre-
sents the severity of the safety concern in a state s̄ ∈ S̄
such that 1 is the lowest level and L is the highest level
where a severity level 1 ≤ ` ≤ L is strictly preferred to
a severity level 1 ≤ `+ 1 ≤ L.

• ψ : P̄ → R+ is an interference function that represents
the interference of a parameter p̄ ∈ P̄ on the action
a ∈ A performed by the task process Υ.

Figure 2: A safety metareasoning system with the task process (red), safety processes (blue), and conflict resolver (purple).

Note that the safety processes θ ∈ Θ of a safety metareason-
ing system share the same exact set of parameters P̄ .

It is important that a safety process recommends an evalu-
ation rating over a set of parameters instead of just a param-
eter. This enables a safety metareasoning system to select a
parameter that mitigates the severity of the safety concerns
while reducing the interference to the task across all safety
processes. An evaluation rating includes multiple values for
each parameter: the expected discounted frequency that the
severity level is incurred by the safety process for each sever-
ity level and the expected discounted cumulative interference
incurred by the safety process when using a parameter in a
state. We define an evaluation rating below.

Definition 3. An evaluation rating, ρθs̄t̄ , over a set of param-
eters P̄ in a state s̄t̄ ∈ S̄ at a time step t̄ ∈ H̄ recommended
by a safety process θ ∈ Θ is represented by the following
|P | × |L+ 1| matrix:

ρθs̄t̄ =

Φθs̄t̄,p̄1

[1] Φθs̄t̄,p̄1
[2] . . . Φθs̄t̄,p̄1

[L] Ψθ
s̄t̄,p̄1

Φθs̄t̄,p̄2
[1] Φθs̄t̄,p̄2

[2] . . . Φθs̄t̄,p̄2
[L] Ψθ

s̄t̄,p̄2

...
...

...
...

...
Φθs̄t̄,p̄N [1] Φθs̄t̄,p̄N [2] . . . Φθs̄t̄,p̄N [L] Ψθ

s̄t̄,p̄N

 .
Observe that Φθs̄,p̄[`] denotes the expected discounted fre-
quency that a severity level 1 ≤ ` ≤ L is incurred by a safety
process θ ∈ Θ and Ψθ

s̄,p̄ denotes the expected discounted
cumulative interference incurred by a safety process θ ∈ Θ
when using a parameter p̄ ∈ P̄ in a state s̄ ∈ S̄.

Third, the conflict resolver selects the parameter to tune
the action performed by the task process given the evaluation
ratings recommended by the safety processes. For instance,
a planetary rover could use a conflict resolver to select an
optimal parameter that minimizes the severity of the safety
concern of a safety process designed for crevices and but also
a safety process designed for dust storms. However, in many
scenarios, there will either be no safety process or only one
safety process that recommends a significant evaluation rat-
ing, which indicates that there is no need for conflict reso-
lution. The conflict resolver representation is a function that
maps the evaluation ratings recommended by the safety pro-
cesses to a parameter. We define a conflict resolver below.

Definition 4. A conflict resolver, σ : ρθ1s̄1×ρ
θ2
s̄2×· · ·×ρ

θn
s̄n →

P , selects the parameter p̄ ∈ P̄ to tune the action performed
by the task process given the evaluation ratings ρθis̄i recom-
mended by the safety processes θi ∈ Θ for conflict resolution.

Therefore, by putting these attributes together, we offer a
formal description of a safety metareasoning system below.
Definition 5. A safety metareasoning system, 〈Υ,Θ, σ〉, ex-
ecutes in parallel a task process Υ designed to complete a
task and a set of safety processes Θ each designed to address
a safety concern, arbitrating with a conflict resolver σ.

The goal of a safety metareasoning system is to select a
parameter at each time step that optimizes a lexicographic
objective function. First, in the order of decreasing sever-
ity level, the system minimizes the maximum expected dis-
counted frequency that each severity level is incurred by
all safety processes (that is, the maximum expected conse-
quences across the safety concerns). Second, the system min-
imizes the maximum expected discounted cumulative interfer-
ence incurred by all safety processes (that is, the maximum
expected efficiency impact on the task). Formally, given the
evaluation ratings ρθi

s̄i
t̄

recommended by the safety processes

θi ∈ Θ in a state s̄it̄ ∈ S̄ at a time step t̄ ∈ H̄ , the lexico-
graphic objective function is below.

min
p̄∈P̄

[
max
θi∈Θ

[
Φθi
s̄i
t̄
,p̄

[L]�Φθi
s̄i
t̄
,p̄

[L−1]� · · · �Φθi
s̄i
t̄
,p̄

[1]�Ψθi
s̄i
t̄
,p̄

]]
Note that the lexicographic preference operator � denotes
that the left term is always optimized prior to the right term.

Figure 2 summarizes a safety metareasoning system. There
is a task transition from the state st ∈ S at time step t ∈ H to
the successor state st+1 ∈ S at time step (t + 1) ∈ H given
the action at = π(st) ∈ A with respect to the task process Υ.
During this task transition, there are many safety transitions
from the state s̄it̄ ∈ S̄ at time step t̄ ∈ H̄ to the successor state
s̄it̄+1 ∈ S̄ at time step (t + 1) ∈ H̄ for each safety process
θi ∈ Θ. During the safety transition, each safety process
θi ∈ Θ recommends an evaluation rating ρθi

s̄i
t̄

over the set of

parameter P̄ to the conflict resolver σ. The conflict resolver σ
then selects the optimal parameter p̄t̄ ∈ P̄ that optimizes the
lexicographic objective function. Once the optimal parameter

Algorithm 1: The evaluation rating generation algo-
rithm used by the safety metareasoning system be-
tween the blue and purple objects in Figure 2.

Input: A safety process θ = 〈S̄, P̄ , T̄ , φ, ψ〉
Output: An evaluation rating matrix ρθ

1 Ψθ := S̄ × P̄ → R+

2 for `→ 1, 2, . . . , L do
3 Φθ[`] := S̄ × P̄ → R+

4 Λ← ∅
5 for `→ L,L− 1, . . . , 1 do
6 κ(s̄, ·) := [φ(s̄) = `]

7 Φθ[`]← MODIFIEDVALUEITERATION(θ, κ,Λ)

8 for s̄ in S̄ do
9 α← minp̄∈P̄ Φθs̄,p̄[`]

10 for p̄ in P̄ do
11 if Φθs̄,p̄[`] > α then
12 Λ← Λ ∪ (s̄, p̄)

13 κ(·, p̄) := ψ(p̄)

14 Ψθ ← MODIFIEDVALUEITERATION(θ, κ,Λ)

15 return ρθ =
[
Φθ[1],Φθ[2], . . . ,Φθ[L],Ψθ

]
p̄t̄ ∈ P̄ is selected by the conflict resolver σ, the action at =
π(st) ∈ A of the task process Υ is tuned in some way that
reflects that parameter. The task process Υ operates on the
time steps t ∈ H while each safety process θi ∈ Θ operates
on the time steps t̄ ∈ H̄ because the parameter of each action
of the task process may be adjusted continually.

In the following sections, we describe two important al-
gorithms required by a safety metareasoning system. First,
in Figure 2, the evaluation rating generation algorithm com-
putes the evaluation ratings ρθi

s̄i
t̄

recommended by a safety pro-
cess θi ∈ Θ between the blue and purple objects. Second,
in Figure 2, the conflict resolution algorithm implements the
conflict resolver σ that selects the optimal parameter p̄t̄ ∈ P̄
across all safety processes between the purple and blue ob-
jects. We now describe both algorithms in detail below.

3.1 Evaluation Rating Generation
The evaluation rating generation algorithm computes the
evaluation ratings recommended by a safety process. This
involves computing multiple values from the prior section:
the expected discounted frequency that each severity level is
incurred using a parameter in a state and the expected dis-
counted cumulative interference incurred by a safety process
using a parameter in a state. The basis for computing these
values involves—for each severity level in the order of de-
creasing severity level and the interference—performing a
modified version of value iteration that operates on a space
of states and parameters in place of a space of states and ac-
tions. As discussed later, this modified version of value itera-
tion must also ignore any state-parameter pair within a set of

Algorithm 2: The modified version of value iteration
used by the evaluation rating generation algorithm.

Input: A safety process θ = 〈S̄, P̄ , T̄ , ·, ·〉, a cost
function κ, and a set of eliminated
state-parameter pairs Λ

Output: An optimal parameter-value function Q∗
Require: A discount factor γ and a threshold ε

1 for s̄ in S̄ do
2 V0(s̄)← 0

3 while t→ 0, 1, . . . ,∞ do
4 for (s̄, p̄) in S̄ × P̄ do
5 if (s̄, p̄) in Λ then
6 Qt+1(s̄, p̄)←∞
7 continue

8 immediate← κ(s̄, p̄)

9 future←
∑
s̄′∈S̄ T̄ (s̄, p̄, s̄′)Vt(s̄

′)
10 Qt+1(s̄, p̄)← immediate + γ · future

11 for s̄ in S̄ do
12 Vt+1(s̄)← minp̄∈P̄ Qt+1(s̄, p̄)

13 if ‖Vt+1 − Vt‖∞ < ε (1−γ)
γ then

14 return Q∗ = Qt+1

eliminated state-parameter pairs that is taken in as input.
At a high level, the evaluation rating generation algorithm

executes the modified version of value iteration for each
severity level in the order of decreasing severity level fol-
lowed by the interference to align with the lexicographic ob-
jective function. That is, given this modified version of value
iteration, the evaluation rating algorithm performs two steps.
First, it performs the modified version of value iteration for
each severity level in the order of decreasing severity level.
Second, it performs the modified version of value iteration
solely for the interference. Across every execution of mod-
ified value iteration, the algorithm maintains a set of elimi-
nated state-parameter pairs that grows with each execution.
This set of eliminated state-parameter pairs is used by each
execution of modified value iteration to discard any parame-
ter worse than the optimal parameter from the prior execution
of modified value iteration. The result is an evaluation rating
for each state of a given safety process. This is done offline
for every safety process before the operation of the system.

Algorithm 1 describes evaluation rating generation. The
expected discounted cumulative interference matrix and the
expected discounted frequency matrix for each severity level
are defined (Lines 1-3). A set of eliminated state-parameter
pairs is initialized (Line 4). A loop from the highest to the
lowest severity level begins (Line 5). A cost function yielding
a unit cost if the severity level of a given state is equal to the
current severity level is defined (Line 6). Modified value iter-
ation computes the expected discounted frequency matrix for
the current severity level (Line 7). The set of eliminated state-
parameter pairs is updated with every state-parameter pair

worse than the corresponding optimal state-parameter pair for
the current severity level (Lines 8-12). A cost function yield-
ing the interference of a given parameter is defined (Line 13).
Modified value iteration computes the expected discounted
cumulative interference matrix (Line 14). An evaluation rat-
ing matrix is returned (Line 15).

Algorithm 2 describes modified value iteration. The value
function at the initial time step is initialized (Lines 1-2). A
loop from the initial time step to an infinite horizon begins
(Line 3). A sweep over every state-parameter pair begins
(Line 4). If the current state-parameter pair is eliminated, its
parameter-value function at the next time step is set to infin-
ity and the sweep continues to the next state-parameter pair
(Lines 5-7). Otherwise, its parameter-value function at the
next step is updated by using the Bellman backup operator
(Lines 8-10). The state-value function at the next step is up-
dated by minimizing over the parameters given the parameter-
value function (Lines 11-12). The optimal parameter-value
function is returned upon convergence (Lines 13-14).

We sketch a proof for the correctness and the time com-
plexity of the evaluation rating generation algorithm below.

Proposition 1 (Correctness). Evaluation rating generation
computes an evaluation rating matrix ρθ with the expected
discounted frequency matrix Φθ[`] for each severity level
1 ≤ ` ≤ L and the expected discounted cumulative interfer-
ence matrix Ψθ that aligns with the lexicographic objective
function for a given safety process θ ∈ Θ.

Proof Sketch. Observe that, for modified value iteration,
there are L executions for each severity level 1 ≤ ` ≤ L
and 1 execution for the interference. Given the convergence
guarantees of standard value iteration without a set of elim-
inated state-parameter pairs, these executions are guaranteed
to compute the expected discounted frequency for each sever-
ity level and the expected discounted cumulative interference
for the interference but may not align with the lexicographic
objective function. However, with a set of eliminated state-
parameter pairs, these values align with lexicographic objec-
tive function. Hence, the algorithm is correct.

Proposition 2 (Time Complexity). Evaluation rating gener-
ation has a time complexity of O((L+ 1)|S̄|2|P̄ |).

Proof Sketch. There are L + 1 executions of modified value
iteration that each have a time complexity of O(|S̄|2|P̄ |) for
a total time complexity of O((L+ 1)|S̄|2|P̄ |).

3.2 Conflict Resolution
The conflict resolution algorithm implements the conflict re-
solver that selects the optimal parameter across all safety pro-
cesses. At a high level, the algorithm prunes a potentially op-
timal set of parameters for each severity level in the order of
decreasing severity level followed by the interference to opti-
mize the lexicographic objective function. More specifically,
the algorithm initializes a set of potentially optimal parame-
ters that can be recommended by each safety process. Fol-
lowing the order of the lexicographic objective function of a
safety metareasoning system, the algorithm prunes the set of

Algorithm 3: The conflict resolution algorithm used
by the safety metareasoning system between the pur-
ple and blue objects in Figure 2.

Input: The evaluation ratings ρθis̄i over the parameters
P̄ in the state s̄i ∈ S̄ of the safety processes
θi ∈ Θ

Output: A random optimal parameter p̄∗ ∈ P̄
1 P̄ ∗ ← P̄

2 for `→ L,L− 1, . . . , 1 do
3 α← minp̄∈P̄

[
maxθi∈Θ Φθis̄i,p̄[`]

]
4 for p̄ in P̄ ∗ do
5 β ← maxθi∈Θ Φθis̄i,p̄[`]

6 if β > α then
7 P̄ ∗ ← P̄ ∗ \ {p̄}

8 α← minp̄∈P̄
[

maxθi∈Θ Ψθi
s̄i,p̄

]
9 for p̄ in P̄ ∗ do

10 β ← maxθi∈Θ Ψθi
s̄i,p̄

11 if β > α then
12 P̄ ∗ ← P̄ ∗ \ {p̄}

13 return RANDOM(P̄ ∗)

potentially optimal parameters in two steps. First, the algo-
rithm prunes the set of potentially optimal parameters in the
order of decreasing severity level based on the expected dis-
counted cumulative number of times that each severity level is
incurred using a given parameter in a specific state. Second,
the algorithm prunes the set of potentially optimal parame-
ters based on the expected discounted cumulative interference
incurred by the safety process using a given parameter in a
specific state. The result is a random optimal parameter that
optimizes the lexicographic objective function. This is done
online for each time step of the system.

Algorithm 3 describes conflict resolution. The set of po-
tentially optimal parameters is initialized (Line 1). For each
severity level in the order of decreasing severity level, the set
of potentially optimal parameters is pruned by removing any
parameter worse than the optimal parameter for the current
severity level (Lines 2-7). For the interference, the set of po-
tentially optimal parameters is pruned by removing any pa-
rameter worse than the optimal parameter for the interference
(Lines 8-12). A random optimal parameter optimizing the
lexicographic objective function is returned (Line 13).

We sketch a proof for the correctness and the time com-
plexity of the conflict resolution algorithm below.

Proposition 3 (Correctness). Conflict resolution selects a
random optimal parameter p̄∗ ∈ P̄ optimizing the lexico-
graphic objective function given the evaluation ratings ρθis̄i
in the state s̄i ∈ S̄ of the safety processes θi ∈ Θ.

Proof Sketch. Notice that there is a pruning step for each
severity level 1 ≤ ` ≤ L that prunes any parameter with a

maximum expected discounted frequency higher than the op-
timal parameter for that severity level and a pruning step for
the interference that prunes any parameter with a maximum
discounted cumulative interference higher than the optimal
parameter for the interference. Since this follows the order of
the lexicographic objective function, any random remaining
parameter is optimal. Thus, the algorithm is correct.

Proposition 4 (Time Complexity). Conflict resolution has a
time complexity of O((L+ 1)|P̄ ||Θ|).

Proof Sketch. There are L severity level pruning steps that
each have a time complexity ofO(|P̄ ||Θ|) and an interference
pruning step that has a time complexity of O(|P̄ ||Θ|) for a
total time complexity of O((L+ 1)|P̄ ||Θ|).

4 Planetary Rover Exploration
We turn to an application of safety metareasoning systems to
a planetary rover exploration domain that forms the basis of
the experiments that we use to evaluate our approach in the
next section. In this domain, a planetary rover must perform
an analysis task that involves analyzing different points of in-
terests P within a region of a planet. Intuitively, the planetary
rover will have a battery, a rock analyzer, a soil analyzer, and
an objective report for the analysis statuses of all points of
interests. Moreover, the planetary rover will be in a region of
the planet that is composed as a grid where each cell experi-
ences a type of weather. In each cell, the planetary rover can
move north, east, south, or west and can also reboot its ana-
lyzers, charge its battery, analyze its current cell, and transmit
its data back to earth. We now describe the analysis task of
the planetary rover in detail below.

The planetary rover has 4 internal components: a battery
of a battery level b ∈ B = {0, 1, . . . ,M} where 0 is a dis-
charged battery and M is a charged battery, a rock analyzer
of a health status h1 ∈ H1 = {NOMINAL, ERROR}, a soil
analyzer of a health status h2 ∈ H2 = {NOMINAL, ERROR},
and an objective report o ∈ O = {TRUE, FALSE}P with an
analysis status TRUE or FALSE for all points of interest P .

The planetary rover is within a region of a planet as an m
by n grid where each cell is at a horizontal location x ∈ X =
{1, 2, . . . , n} and a vertical location y ∈ Y = {1, 2, . . . ,m}
with weather of a type w ∈W = {LIGHT,DARK}.

The planetary rover can perform 4 nonstationary actions in
each cell (x, y): it can move north to a cell (x, y− 1), east to
a cell (x + 1, y), south to a cell (x, y + 1), or west to a cell
(x − 1, y) if the new horizontal position is between 0 and m
and the new vertical position is between 0 and n.

The planetary rover can perform 4 stationary actions in
each cell (x, y): it can reboot its analyzers to set the health
statuses of the water analyzer h1 and the soil analyzer h2 to
NOMINAL, charge its battery to the battery level b′ = (b+ 2)
if the cell (x, y) has weather of a type w = LIGHT, analyze
the cell (x, y) if the health statuses of the water analyzer h1

and the soil analyzer h2 are set to NOMINAL, and transmit
its data back to mission control on Earth to complete the mis-
sion if the objective report is o = {TRUE}P with an analysis
status TRUE for all points of interest P .

Any action discharges the battery to the battery level b′ =
(b− 1) and requires the battery to be at battery level b > 0.

4.1 Task Process
The task process Υ designed to complete the analysis task of
the planetary rover is represented by an MDP 〈S,A, T,R〉.
The set of states S = X × Y ×B ×H1 ×H2 ×O crosses a
set of horizontal positions X , a set of vertical positions Y , a
set of battery levels B, a set of rock analyzer health statuses
H1, a set of soil analyzer health statuses H2, and a set of
objective reports O. The set of actions A = {↑,→, ↓,←
,	,⊕,�,�} contains the north action ↑, the east action→,
the south action ↓ , the west action ←, the reboot action 	,
the charge action ⊕, the analyze action �, and the transmit
action �. The transition function T and the reward function
R are designed for the analysis task of the planetary rover.

4.2 Safety Processes
We consider three safety processes Θ designed to address the
safety concerns of the planetary rover. Intuitively, each safety
process has its own information that reflects its safety concern
and can tune the action performed by the planetary rover by
changing its wheel rotation rate (i.e., speed) and its steering
(i.e., direction). Formally, each safety process θ ∈ Θ has a set
of states S̄θ that describe the safety concern but shares a set of
parameters P̄ = P̄1 × P̄2 with parameter factors P̄1 and P̄2:
the wheel rotation rate parameter factor P̄1 = {∅,⇓,⇑,♦}
such that the value ⇓ decreases the wheel rotation rate, the
value ⇑ increases the wheel rotation rate, and the value ♦
stops the wheel rotation rate and the steering parameter factor
P̄2 = {∅,⇐,⇒} such that the value⇐ shifts the planetary
rover to the left and the value⇒ shifts the planetary rover to
the right (with the value ∅ for no tuning in both parameter
factors). The transition function T̄θ, the severity function φθ,
and the interference function ψθ are designed to address a
specific safety concern of the planetary rover. We describe
the crevice safety process, the dust storm safety process, and
the rough terrain safety process below.

Crevices The process, θc = 〈S̄c, P̄ , T̄c, φc, ψc〉, monitors
for crevices to prevent the rover from inhibiting its wheels.
The set of states S̄c = F 1

c × F 2
c × F 3

c × F 4
c crosses

the horizontal rover position relative to the crevice F 1
c =

{NONE,APPROACHING,AT}, the vertical rover position rel-
ative to the crevice F 2

c = {NONE, LEFT,CENTER,RIGHT},
the rover speed F 3

c = {NONE, LOW,NORMAL,HIGH},
and the rover offset relative to its normal path F 4

c =
{LEFT,CENTER,RIGHT}. The transition function T̄c reflects
the dynamics between a state s ∈ S̄c, a parameter p ∈ P̄c, and
a successor state s′ ∈ S̄c, the severity function φc indicates
the severity of a crevice in a state s̄ ∈ S̄c, and the interference
function ψc represents the interference of a parameter p ∈ P̄c
on an action a ∈ A performed by the task process. These
three attributes are designed to enable the crevice safety pro-
cess to avoid navigating into crevices that inhibit the move-
ment of the wheels of the planetary rover.

Dust Storms The process, θd = 〈S̄d, P̄ , T̄d, φd, ψd〉, mon-
itors for dust storms to prevent the rover from destroying its
sensitive sensors. The set of states S̄d = F 1

d × F 2
d crosses

r0 r1 r2 r3
1

100
Se

ve
ri

ty
L

ev
el
`

=
5

Fr
eq

ue
nc

y Crevices
Dust Storms
Rough Terrain

r0 r1 r2 r3
1

100

Se
ve

ri
ty

L
ev

el
`

=
4

Fr
eq

ue
nc

y Crevices
Dust Storms
Rough Terrain

r0 r1 r2 r3
1

100

Se
ve

ri
ty

L
ev

el
`

=
3

Fr
eq

ue
nc

y Crevices
Dust Storms
Rough Terrain

r0 r1 r2 r3
1

100

Se
ve

ri
ty

L
ev

el
`

=
2

Fr
eq

ue
nc

y Crevices
Dust Storms
Rough Terrain

r0 r1 r2 r3
1

6K

Se
ve

ri
ty

L
ev

el
`

=
1

Fr
eq

ue
nc

y Crevices
Dust Storms
Rough Terrain

r0 r1 r2 r3
1

2K

C
um

ul
at

iv
e

In
te

rf
er

en
ce

[s
ec

] Crevices
Dust Storms
Rough Terrain

Figure 3: The performance of each planetary rover with respect to each severity level and the interference starting with no
safety processes and ending with all safety processes. Note that the charts (a), (b), (c), and (d) have a limit of only 100 as unsafe
operation is rare, the chart (e) has a limit of 6000 as safe operation is common, and the chart (f) has a limit of 2000.

the dust storm density F 1
d = {1, 2, . . . , J} with a maximum

of J and the rover mode F 2
d = {ISAWAKE, ISSLEEPING}.

The transition function T̄d reflects the dynamics between a
state s ∈ S̄d, a parameter p ∈ P̄d, and a successor state
s′ ∈ S̄d, the severity function φd indicates the severity of the
dust storm in a state s̄ ∈ S̄d, and the interference function ψd
represents the interference of a parameter p ∈ P̄d on an action
a ∈ A performed by the task process. These three attributes
are designed to enable the dust storm safety process to avoid
damaging the sensitive sensors of the planetary rover.

Rough Terrain The process, θr = 〈S̄r, P̄ , T̄r, φr, ψr〉,
monitors for rough terrain to prevent the rover from dam-
aging its wheel. The set of states S̄r = F 1

r × F 2
r × F 3

r
crosses the horizontal rover position relative to the crevice
F 1
r = {NONE,APPROACHING,AT}, the rover speed F 2

r =
{NONE, LOW,NORMAL,HIGH}, and the terrain roughness
F 3
r = {1, 2, . . . ,K} with a maximum of K. The transition

function T̄r reflects the dynamics between a state s ∈ S̄r, a
parameter p ∈ P̄r, and a successor state s′ ∈ S̄r, the sever-
ity function φr indicates the severity of the rough terrain in
a state s̄ ∈ S̄r, and the interference function ψr represents
the interference of a parameter p ∈ P̄r on an action a ∈ A
performed by the task process. These three attributes are
designed to enable the rough terrain safety process to avoid
damaging the wheels of the planetary rover.

5 Experiments
We demonstrate that the application of safety metareasoning
systems to the planetary rover exploration domain is effective
in simulation. In particular, we compare a standard planetary
rover to different safety metareasoning planetary rovers. The
standard planetary rover r0 does not have any safety metar-
easoning while the different safety metareasoning planetary
rovers ri>0 have a growing set of safety processes: Θr0 = {},
Θr1 = {θc}, Θr2 = {θc, θd}, and Θr3 = {θc, θd, θr}.

Each planetary rover completes the analysis task and ad-
dresses different safety concerns that occur stochastically ei-
ther in isolation or simultaneously throughout 50 simulations.
For the analysis task, the internal components of the plane-
tary rover begin with a battery level b = M = 10, health
statuses h1 = h2 = NOMINAL, and an objective report
o = (FALSE, FALSE) while the region of the planet has
|P | = 2 points of interest in an m = 10 by n = 10 grid
such that each cell has weather of a type w = LIGHT with
0.8 probability or w = DARK with 0.2 probability. For dust

Capabilities NAIVE PROPOSED

Analysis Task 16000 16000
+ Crevices + 2288000 + 144
+ Dust Storms + 43776000 + 20
+ Rough Terrain + 5483520000 + 120

Table 1: The total states required by the naive approach that
uses a monolithic MDP and our proposed approach to safety.

storms, the maximum dust storm density is J = 10. For
rough terrain, the maximum terrain roughness is K = 10.

Figure 3 shows that our proposed approach is effective in
simulation. In Figure 3(a) and (e), at the highest and lowest
severity levels, the severity level 5 frequency decreases while
the severity level 1 frequency increases from r0 to r3 as ex-
pected. In Figure 3(b), (c), and (d), at the middle severity lev-
els, the severity level 4, 3, and 2 frequencies remain roughly
equal or decrease from r0 to r2 but then increase at r3. This is
because the severity level 4, 3, and 2 frequencies for crevices
and dust storms must increase to decrease the severity level
5 frequency for rough terrain since a lower severity level is
strictly preferred to a higher severity level given the lexico-
graphic objective function. In Figure 3(e), the cumulative in-
terference increases from r0 to r3 as expected. As a summary,
the system mitigates the severity of the safety concerns while
reducing the interference to the task.

Table 5 shows the intractability of a naive approach using a
monolithic MDP with every feature of each safety process de-
signed to reflect our proposed approach: as the agent becomes
capable of addressing each safety concern, the naive approach
grows multiplicatively while our proposed approach grows
additively with the set of states for each safety process.

6 Conclusion
We propose a novel metareasoning approach to safety in au-
tonomous systems. First, we offer a definition of a safety
metareasoning system, an evaluation rating generation algo-
rithm for a safety process, and a conflict resolution algorithm
for a conflict resolver. Next, we present an application of our
approach to a planetary rover exploration domain. Finally,
we demonstrate that the application of a safety metareasoning
planetary rover is effective in simulation. Future work will in-
vestigate sophisticated, general-purpose safety processes for
a wide range of safety concerns in planning and robotics.

Acknowledgments
This work was supported in part by the NSF grants DGE-
1451512, IIS-1813490, and IIS-1954782.

References
[1] J. Svegliato, K. H. Wray, S. J. Witwicki, J. Biswas, and

S. Zilberstein, “Belief space metareasoning for excep-
tion recovery,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, 2019.

[2] C. Basich, J. Svegliato, K. H. Wray, S. Witwicki,
J. Biswas, and S. Zilberstein, “Learning to optimize au-
tonomy in competence-aware systems,” in Proceedings
of the International Conference on Autonomous Agents
and Multi-Agent Systems, 2020.

[3] C. Basich, J. Svegliato, S. Zilberstein, K. H. Wray,
and S. J. Witwicki, “Improving competence for reliable
autonomy,” in Proceedings of the ECAI Workshop on
Agents and Robots for Reliable Engineered Autonomy,
2020.

[4] D. Amodei, C. Olah, J. Steinhardt, P. Christiano,
J. Schulman, and D. Mané, “Concrete problems in AI
safety,” arXiv:1606.06565, 2016.

[5] S. Saisubramanian, E. Kamar, and S. Zilberstein, “A
multi-objective approach to mitigate negative side ef-
fects,” in Proceedings of the 29th International Joint
Conference on Artificial Intelligence, 2020.

[6] S. Zhang, E. H. Durfee, and S. P. Singh, “Minimax-
regret querying on side effects for safe optimality in fac-
tored MDPs,” in Proceedings of the 27th International
Joint Conference on Artificial Intelligence, 2018.

[7] R. C. Arkin, “Governing lethal behavior: Embedding
ethics in a hybrid deliberative/reactive robot architec-
ture,” in Proceedings of the 3rd ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, 2008.

[8] J. Shim, R. Arkin, and M. Pettinatti, “An interven-
ing ethical governor for a robot mediator in patient-

caregiver relationship,” in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation,
2017.

[9] J. Svegliato, S. B. Nashed, and S. Zilberstein, “Ethically
compliant sequential decision making,” in Proceedings
of the 35th AAAI Conference on Artificial Intelligence,
2021.

[10] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell,
and A. Dragan, “Inverse reward design,” Proceedings of
the 31st Conference on Neural Information Processing
Systems, 2017.

[11] R. Dearden, T. Willeke, R. Simmons, V. Verma, F. Hut-
ter, and S. Thrun, “Real-time fault detection and situa-
tional awareness for rovers,” in IEEE Aerospace Con-
ference, 2004.

[12] V. Verma, G. Gordon, R. Simmons, and S. Thrun, “Par-
ticle filters for rover fault diagnosis,” IEEE RA Maga-
zine, 2004.

[13] J. P. Mendoza, M. Veloso, and R. Simmons, “Mobile
robot fault detection based on redundant information
statistics,” in Proceedings of the IROS Workshop on
Safety in Human-Robot Coexistence and Interaction,
2012.

[14] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey,
“Fault detection in a mobile robot using multiple-model
estimation,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 1998.

[15] P. Goel, G. Dedeoglu, S. I. Roumeliotis, and G. S.
Sukhatme, “Fault detection in a mobile robot using a
neural network,” in Proceedings of the International
Conference on Robotics and Automation, 2000.

[16] A. S. Manne, “Linear programming and sequential de-
cisions,” Management Science, 1960.

[17] R. Bellman, “Dynamic programming,” in Science.
American Association for the Advancement of Science,
1966.

