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Abstract

Ethically compliant autonomous systems (ECAS) are the
state-of-the-art for solving sequential decision-making prob-
lems under uncertainty while respecting constraints that en-
code ethical considerations. This paper defines a novel con-
cept in the context of ECAS that is from moral philoso-
phy, the moral community, which leads to a nuanced taxon-
omy of explicit ethical agents. We then propose new ethical
frameworks that extend the applicability of ECAS to domains
where a moral community is required. Next, we provide a
formal analysis of the proposed ethical frameworks and con-
duct experiments that illustrate their differences. Finally, we
discuss the implications of explicit moral communities that
could shape research on standards and guidelines for ethical
agents in order to better understand and predict common er-
rors in their design and communicate their capabilities.

Introduction
Researchers do not yet fully understand how automated in-
telligent systems produce or exacerbate different types of
harms and how to prevent these harms in the first place.
Enabling automated decision-making systems to comply
with ethical theories shows some promise, but these the-
ories are still challenging to implement despite extensive
study in moral philosophy. Currently, ethically compliant
autonomous systems (ECAS) (Svegliato, Nashed, and Zil-
berstein 2021) represent the state-of-the-art for applying eth-
ical constraints to agent behavior. ECAS work by aug-
menting mathematical programs representing decision pro-
cesses with an additional, independent constraint that en-
forces compliance with a moral principle based roughly on
an ethical theory. Solving the program produces behavior
that is guaranteed to comply with the constraints of the eth-
ical theory. However, many popular ethical theories which
require explicit consideration of multiple agents simultane-
ously, such as utilitarianism or contractarianism, have yet to
be explored in this context. Here, we extend recent work on
ECAS to ethical theories that require explicit moral commu-
nities, which are considerably more complex.

In moral philosophy, the moral community is the set of
agents considered during ethical decision making. All eth-
ical theories define moral communities either implicitly or
explicitly. For example, utilitarianism requires a set of
agents to be enumerated explicitly whose expected future
utility is collectively maximized, while an agent using prima
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facie duties implicitly defines its moral community based on
which duties are included and how their relevance to a given
situation is determined. The cost of generating constraints
such that agent behavior adheres to moral principles that ex-
plicitly reason about moral communities can in some cases
scale exponentially with respect to the size of the moral com-
munity. In practice, an agent may approximate the effects
of its actions on members of the moral community through
information provided in its ethical context. We propose
several new ethical frameworks that can be used in ECAS,
modeled on act utilitarianism, the veil of ignorance, and the
Golden Rule, which involve more complex ethical contexts
to tractably represent these ethical theories. We follow pre-
vious work that uses Markov Decision Processes (MDPs) to
illustrate how different ethical frameworks may be applied
to decision processes. These frameworks are evaluated in
a simulated environment, where we explore differences in
behavior between agents following different ethical frame-
works. We find that frameworks vary in which policies they
prefer, theoretical and practical compute requirements, re-
liance on different parts of their ethical contexts, and even
the existence of a solution in a given scenario.

The scalability of moral principles that reason explic-
itly about moral communities also raises several fundamen-
tal questions about how work on ethical decision making
should proceed. When is it acceptable to approximate ethi-
cal frameworks given that their purpose is to guard against
other forms of corner-cutting in the development process?
When is it acceptable to rely on implicitly defined moral
communities? How do we understand model-level and
design-level approximations in the context of ethically com-
pliant systems? How can interdisciplinary research help us
understand the effects of model fidelity on ethical decision
making? We provide insights into these questions and an-
alyze the differences between ethical frameworks and their
applicability to various deployment contexts.

This paper offers four contributions. First, we define
moral communities within the context of ECAS and show
how this definition clarifies requirements and capabilities of
intelligent ethical agents. Second, we define several new
ethical frameworks within ethically compliant autonomous
systems. Third, we provide a complexity analysis of these
new frameworks. Last, we present an extensive discussion
of the potential implications of the complexity of some pop-
ular ethical theories and insights regarding how implicit and
explicit moral communities affect dominant ideas and prac-
tices surrounding development of ethical reasoning systems.



Related Work
The application of moral or ethical reasoning to automated
systems at conception, regulation, design, and deployment
is a broad and nuanced field of research. This paper builds
on the ECAS framework (Svegliato, Nashed, and Zilberstein
2021), and those seeking a holistic treatment of the liter-
ature should look there. Surveys of technical approaches
also exist (Yu et al. 2018). Here, we focus on work that
enforces moral or ethical behavior in multi-agent systems
explicitly in a top-down manner—a topic of broad inter-
est (Yilmaz, Franco-Watkins, and Kroecker 2017; Rossi and
Mattei 2019; Murukannaiah et al. 2020; Morgan et al. 2020).

Most research in this area uses various logic systems.
For example, systems based on deontic logic (van der Torre
2003; Bringsjord, Arkoudas, and Bello 2006) or temporal
logic (Wooldridge and Van Der Hoek 2005; Atkinson and
Bench-Capon 2006) have both been proposed for prescrib-
ing ethical agent behavior. Some methods even use a form of
metareasoning over a set of logics (Bringsjord et al. 2011).
Recently, methods based on Answer Set Programming have
been proposed (Berreby, Bourgne, and Ganascia 2015), in-
cluding some that focus on modeling interactions between
agents in addition to the effect of individual agents’ ac-
tions (Cointe, Bonnet, and Boissier 2016a).

Related research has proposed reasoning systems that im-
pose semantic ordering over logical statements, including
Belief-Desire-Intention architectures (Cointe, Bonnet, and
Boissier 2016b) and case-supported principle-based behav-
ior models (Anderson and Anderson 2015). Programming
languages for multi-agent systems that support ethical con-
cepts like sanctioning an agent and representing an action’s
effects on other agents have also been proposed (Dastani,
Tinnemeier, and Meyer 2009). Other systems combine hu-
man oversight with logical or rule-based constraints repre-
senting ethical behavior, for example within ethical mission
execution automata (Brutzman et al. 2018). Logic-based
systems are attractive for several reasons, including their
interpretability and their accessibility to theoretical tools
and guarantees. However, they also have significant draw-
backs. Nuanced behavior can become difficult to specify
as agent capabilities increase, and deploying such systems
in stochastic environments presents challenges that are still
unsolved (Abel, MacGlashan, and Littman 2016).

Not all ethical reasoning systems are based on logic sys-
tems. Some research models ethical behavior using game-
theoretic concepts (Conitzer et al. 2017), but this strategy
has yet to be widely adopted. Generating ethical behavior
in reinforcement learning agents (Thomas et al. 2019) and
reward shaping using human moral exemplars (Wu and Lin
2017) could be considered motivational analogs to ECAS.
However, while prior systems generate policies from MDPs
and produce ethical constraints independently from task
constraints, unlike ECAS, they ultimately cannot produce
guarantees since they mix reward for task completion with
reward for ethical compliance. In this work, we take the
view that human error in design is a source of significant eth-
ical risk (Etzioni and Etzioni 2017). We build on strengths
of ECAS, emphasizing better human-computer design inter-
face rather than larger data sets or smarter algorithms.

Background
Markov Decision Processes A Markov decision process
(MDP) is a decision-making model for reasoning in fully ob-
servable, stochastic environments (Bellman 1952) that has
broad applicability, including rescue robots (Goodrich et al.
2008; Pineda et al. 2015), planetary rovers (Mustard, Beaty,
and Bass 2013; Gao and Chien 2017), and autonomous vehi-
cles (Svegliato et al. 2019; Basich et al. 2020; Nashed et al.
2021). An MDP can be described as a tuple 〈S,A, T,R, d〉.
S is a finite set of states, where s ∈ S may be expressed in
terms of a set of state factors, 〈f1, f2, . . . , fN 〉, such that s
indexes a unique assignment of variables to the factors f ; A
is a finite set of actions; T : S × A× S → [0, 1] represents
the probability of reaching a state s′ ∈ S after performing
an action a ∈ A in a state s ∈ S; R : S × A× S → R rep-
resents the expected immediate reward of reaching a state
s′ ∈ S after performing an action a ∈ A in a state s ∈ S;
and d : S → [0, 1] represents the probability of starting in a
state s ∈ S. A solution to an MDP is a policy π : S → A
indicating that an action π(s) ∈ A should be performed
in a state s ∈ S. A policy π induces a value function
V π : S → R representing the expected discounted cumu-
lative reward V π(s) ∈ R for each state s ∈ S given a
discount factor 0 ≤ γ < 1. An optimal policy π∗ maxi-
mizes the expected discounted cumulative reward for every
state s ∈ S by satisfying the Bellman optimality equation
V ∗(s) = maxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′)+γV ∗(s′)].

One approach for calculating an optimal policy expresses
the optimization problem as a linear program in either the
primal form or the dual form (Manne 1960). This paper pro-
poses several ethical frameworks, some of which naturally
map to the primal form and others to the dual form. The pri-
mal form minimizes a set of value variables Vs for the value
V (s) of each state s ∈ S subject to a set of constraints that
maintain the Bellman optimality equation.

min
V

∑
s∈S

d(s)Vs

s.t. Vs ≥
∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γVs′

]
∀s, a

The dual form maximizes a set of occupancy measures
µsa for the discounted number of times an action a ∈ A is
performed in a state s ∈ S subject to a set of constraints that
maintain consistent and non-negative occupancy.

max
µ

∑
s∈S

∑
a∈A

µsa
∑
s′∈S

R(s, a, s′)

s.t.
∑
a′∈A

µs
′

a′ = d(s′) + γ
∑
s∈S

∑
a∈A

T (s, a, s′)µsa ∀s′

µsa ≥ 0 ∀s, a
Given the solution as V ∗ (primal form) or µ∗ (dual form),

the optimal policy π∗(s) can be calculated as follows.

π∗(s) = arg max
a∈A

[∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γV ∗s′

]]
π∗(s) = arg max

a∈A
µ∗sa



Ethically Compliant Autonomous Systems An ethically
compliant autonomous system (ECAS) has a decision-
making model for completing its task and an ethical con-
text and a moral principle for following its ethical frame-
work (Svegliato, Nashed, and Zilberstein 2021). A decision-
making model D describes the information needed to com-
plete the task. An ethical context E describes the informa-
tion required to follow the ethical framework. A moral prin-
ciple ρ : Π → B evaluates the morality of a policy for the
decision-making model within the ethical context.
Definition 1. An ECAS, 〈D, E , ρ〉, optimizes completing a
task by using a decision-making model D while following
an ethical framework by adhering to a moral principle ρ :
Π→ B within an ethical context E .

The objective of an ECAS is to find an optimal policy
subject to following an ethical framework.
Definition 2. The objective of an ECAS is to find an optimal
moral policy, π∗ρ ∈ Π, by solving for a policy π ∈ Π within
the space of policies Π that maximizes a value function V π
subject to a moral principle ρ in the optimization problem.

maximize
π∈Π

V π subject to ρ(π)

An ECAS can follow an ethical framework that impacts
completing its task. We define this impact as the maximum
difference across all states between the value functions of
the optimal moral policy and optimal amoral policy.
Definition 3. Given the optimal moral policy π∗ρ ∈ Π and
the optimal amoral policy π∗ ∈ Π, the price of morality, ψ,
can be represented by the expression ψ = ‖V π

∗
ρ − V π∗‖∞.

There are many possible alternative definitions of ψ, in-
cluding, for example, the mean or median difference across
states, or the sum of all differences across states. We chose
the maximum difference because it is conservative in the
sense that it captures the maximum change, and it is sen-
sitive to outliers as affected states will not be obscured by an
aggregate statistic. These two properties are key to realizing
potential impacts of following a given ethical framework.

An ECAS can follow an ethical framework incompatible
with completing its task. Its feasibility depends on whether
a solution exists to the optimization problem.
Definition 4. An ECAS is realizable if and only if there ex-
ists a policy π ∈ Π such that its moral principle ρ(π) is
satisfied. Otherwise, it is unrealizable.

Lane Merging Example Suppose an autonomous vehicle
is in the process of merging lanes, say from two lanes to
one. To use ECAS, we first choose a moral principle to
follow during the lane merging process, which describes a
property that the policy must satisfy. For instance, a utilitar-
ian moral principle might require policies to minimize the
total expected drive time for all agents, rather than just the
agent making the decision. Given a moral principle, we de-
fine the ethical context, which contains the information for
evaluating the moral principle. In the utilitarian example,
the ethical context requires both models of other agents, as
well as models of how our own agent’s actions effect other

agents’ state, which are required to reason about the impact
of our agent’s actions. Other moral principles may require
simpler contexts, such as sets of forbidden states or penalty
functions for violating certain norms in certain states.

Moral Communities
The moral community is a concept from moral philosophy
that defines the set of entities with moral considerability.
Such entities should have their welfare resulting from a
given action taken into account when considering whether
or not to take that action. In many forms of utilitarianism, all
humans and many animals are members of the moral com-
munity because they are sentient or conscious (Frey 2011).
Other ethical theories consider only those represented in ne-
gotiation of a social contract (Froese 2001) or those capable
of logical reasoning (Rawls 1980). We use the broad term
entities because there are serious arguments for the moral
considerability of inanimate bodies (Brennan 1984). In gen-
eral, membership in a moral community depends on the def-
inition of the ethical theory and is contested in both norma-
tive and applied ethics (Cahen 1988; Lomasky 1990; Birch
1993; Bernstein 1998; Bagnoli 2007; Caton 2020).

In fact, all decision-making systems with ethical reason-
ing components define moral communities, even if they are
not made explicit. For example, the moral community is
clear in implementations of utilitarianism since they require
an explicit set of agents to calculate the overall welfare of
those agents when choosing its action. However, an agent
using prima facie duties to choose ethical actions implic-
itly defines its moral community via several design deci-
sions. These include which duties are included and how
their relevance to a given situation is determined. For in-
stance, one duty might be to always tell the truth, which
implicitly constrains the moral community to entities that
can communicate. In some scenarios, more specific du-
ties might be defined, such as maintaining lane membership
in an autonomous vehicle. This duty is important for the
safety of the driver, passengers, and other motorists. How-
ever, this duty by itself may fail to reflect the preferences of
many stakeholders in the roadway system such as cyclists,
pedestrians, construction workers, parked or loading vehi-
cles, or emergency vehicles. Implicit moral communities are
not categorically better or worse than explicit ones, but we
should be careful to understand tradeoffs and vulnerabilities
created by how we represent moral communities.

Early work on ethical autonomous systems made a dis-
tinction between autonomous systems that satisfy moral re-
quirements purely through careful construction, called im-
plicit ethical agents, and those capable of moral reason-
ing, called explicit ethical agents (Moor 2006). Subsequent
research has highlighted the importance of explicit ethical
reasoning (Bench-Capon and Modgil 2017; Dignum et al.
2018). In the context of ECAS, there is a similar dichotomy
when considering the moral community. All ECAS are ex-
plicit ethical agents, but which entities they reason over
may be specified implicitly, explicitly, or some combination.
Here, we formally define the moral community and use this
definition to illuminate several sub-classes of ECAS.
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Figure 1: A taxonomy of intelligent ethical agents. Value-aware
and transition-aware ethical agents are necessarily state-aware.

Definition 5. A moral community is a set of agents I =
{1, 2, . . . , N} that have moral considerability with respect
to the operation of an ECAS.
Definition 6. A moral community model is a set of tuples
M = {(S1, V1), (S2, V2), . . . , (SM , VM )} such that each
tuple (Si, Vi) has a state space Si and a value function Vi for
each agent i within a subset of the moral community Î ⊆ I.
Definition 7. An inclusive ECAS has an ethical context E =
〈e1, . . . , e`〉 such that there exists an attribute e that is a
moral community modelM where |I| = |Î|.
Definition 8. An exclusive ECAS has an ethical context E =
〈e1, . . . , e`〉 that does not contain a moral community model.
Definition 9. A selective ECAS is not inclusive or exclusive.

These definitions extend an existing taxonomy of intel-
ligent ethical agents, producing the classes shown in Fig-
ure 1. An agent’s taxonomic class depends on whether it
reasons explicitly about the ethics of its actions (explicit eth-
ical agents) or not (implicit ethical agents). Explicit ethical
agents can be further sub-divided into those that use explicit
models of members of their moral community (selective and
inclusive) and those that do not (exclusive). Selective and
inclusive agents may use a variety of different information.
This includes the possible states of moral community mem-
bers (state-aware), the state-dependent welfare, or value, of
members (value-aware), or a model for how the agent’s own
actions might affect the state of other members (transition-
aware). These model types may overlap, and there may be
other types of models that describe members of the moral
community but do not use states, values, or transitions. The
most integrated versions of such models result in multi-agent
planning problems. These models are the most accurate but
are also typically prohibitively expensive.

The frameworks presented in this paper rely on explicit
moral communities, which have several benefits. First, con-
straints generated from explicit moral communities are often
more accurate approximations of the real world since mod-
els can be customized for individual entities. This allows
more nuanced and individualized decision making. Second,
developers are less likely to forget an individual or a class
of stakeholders when required to represent them explicitly
within the ethical context. Third, explicitly enumerating and
modeling every stakeholder can uncover implicit assump-
tions that, if unaddressed, could cause unintended harm.

However, explicit moral communities are not a panacea.
Constructing constraints for moral principles that use ex-
plicit moral communities is naturally computationally ex-
pensive. Moreover, explicit ethical contexts often place a
substantially higher burden on engineers who must design
models for not only the decision-making agent but other
agents as well. Nonetheless, we believe ethical decision
making, and ECAS in particular, can benefit from ethical
frameworks that use explicit moral communities.

Lane Merging Example Roadway systems are complex,
with many different stakeholders. The moral community
for this system could reasonably include all motorists, bi-
cyclists, pedestrians, construction workers, and emergency
vehicles. It may also include entities that depend on func-
tioning roadways indirectly, such as businesses. It is up to
the developer to decide which types of entities to model and
how to model them. For simplicity, our examples include
only other motorists within our moral community.

Ethical Frameworks
In this section, we present a set of simplified ethical frame-
works used to partially define ECAS. Each ethical frame-
work approximates a well-known ethical theory in moral
philosophy (Shafer-Landau 2009). Their purpose is to en-
code an ethical theory in a tractable way, acknowledging
that they do not capture all nuances of the ethical theories on
which they are based. We encourage work on more complex
ethical frameworks that reflect the depth of different ethical
theories, including extensions to those presented here.

The Veil of Ignorance
The Veil of Ignorance (VOI), a concept proposed by John
Rawls in his theory of a fair and just society, states that an
agent should make decisions by acting as if they are deprived
of knowledge of their personal circumstances (Rawls 2009).
That is, it holds that an action is moral based on whether an
agent would perform that action if it ignored its own per-
sonal circumstances. In an MDP, an agent’s circumstance is
completely described by the values of its current state fac-
tors. An agent’s personal circumstance may be captured by
a subset of state factors. We consider an ethical framework
that requires a policy to select actions that ensure a bounded
difference between the value of the ECAS policy in a given
scenario and the corresponding value of all other agent poli-
cies in the same scenario after ignoring veiled state factors.

Definition 10. The Veil of Ignorance ethical context, EV , is
represented by a tuple EV = 〈M,V, τ〉:
• M = {(S1, V1), (S2, V2), . . . , (SM , VM )} is a moral

community model: each tuple (Si, Vi) has a state space
Si and a value function Vi for each agent i within a subset
of the moral community Î ⊆ I.

• V = {1, 2, . . . , `} is a veil of ignorance such that each
index v ∈ V is an index of a state factor within the veil of
ignorance.

• τ ∈ R+ is a tolerance.



Definition 11. The Veil of Ignorance moral principle, ρV ,
is expressed as the following equation:

ρV(π) =
∧
i∈M

∧
s∈S

∧
si∈Si

[
s ∼ si =⇒ |V π(s)−Vi(si)| ≤ τ

]
.

The veil equivalence operator, s ∼ si
.
= ∧v 6∈V [s[v] =

si[v]], is true if a state s = 〈f1, f2, . . . , fn〉 of an ECAS
and a state si = 〈f1

i , f
2
i , . . . , f

n
i 〉 of an agent i ∈ I have

identical state factor values for each state factor not within
the veil of ignorance V and false otherwise.

Transition Awareness
The Veil of Ignorance ethical context is an example of an
ethical context that is both state-aware and value-aware.
However, it is not transition-aware. Given a particular state
and action, an agent using a transition-aware ethical context
can reason explicitly and probabilistically about the likely
resultant states of other agents should it take a given action.
This type of model is useful for explainability and ascribing
intentionality. Humans often consider intentionality when
determining the morality of an action. Although they exhibit
several quirks of reasoning regarding intentionality (Young
et al. 2006; Leslie, Knobe, and Cohen 2006; Guglielmo and
Malle 2010), these concepts are still key to determining li-
ability or criminality in some cases. Transition awareness
allows automated systems to assume an equivalent respon-
sibility since we could inspect a given transition model and
derive whether a system had full knowledge of possible con-
sequences of an action. Here, we present an example of a
transition-aware ethical context and show how it can be used
to evaluate additional types of moral principles.

Definition 12. A transition-aware ethical context, EF , is
represented by a tuple EF = 〈M,F ,P, τ〉:
• M = {(S1, V1), (S2, V2), . . . , (SM , VM )} is a moral

community model: each tuple (Si, Vi) has a state space
Si and a value function Vi for each agent i within a subset
of the moral community Î ⊆ I.

• F = {f1, f2, . . . , fn} is a set of impact functions such
that a function fi : S × S × Si × Si → [0, 1] yields
the probability that a transition from a state s ∈ S to a
successor state s′ ∈ S for the agent will cause a transition
from a state si ∈ Si to a successor state s′i ∈ Si for an
agent i within a subset of the moral community Î ⊆ I.

• P = {p1, p2, . . . , pm} is a set of correspondence func-
tions such that a function pi : S × Si → [0, 1] yields the
probability that an agent i within a subset of the moral
community Î ⊆ I is in a state si ∈ Si given that the
agent is in a state s ∈ S.

• τ ∈ R+ is a tolerance.

Given a transition-aware ethical context, we define two
quantities. First, given an ECAS in a state s ∈ S performing
an action a ∈ A, the future expected value, V̌ ai (s), for an
agent i in the moral community Î ⊆ I is expressed as

V̌ ai (s) =
∑
si∈Si

pi(s, si)
∑
s′∈S

T (s, a, s′)
∑
s′i∈Si

fi(s, s
′, si, s

′
i)Vi(s

′
i).

Second, the current expected value, V̂i(s), for an agent
i in the moral community Î ⊆ I is expressed as

V̂i(s) =
∑
si∈Si

pi(si|s)Vi(si).

We now offer two examples of ethical frameworks that
use these value functions to define their moral principles.

The Golden Rule The Golden Rule (GR), a classic test
of morality, states that an agent should treat other agents as
that agent would want to be treated (Wattles 1966). Namely,
it holds that an action is moral based on whether an agent
would want all other agents to perform that action on that
agent. We consider a moral principle that requires a policy
to select actions that do not decrease the value of all agents
by more than some tolerance.
Definition 13. The Golden Rule moral principle, ρG , is ex-
pressed as the following equation:

ρG(π) =
∧
s∈S

∧
i∈M

[
V̂i(s)− V̌ π(s)

i (s) ≤ τ
]
.

Act Utilitarianism Act Utilitarianism (AU), proposed by
Jeremy Bentham and John Stuart Mill in the 19th century,
states that an agent should make decisions that maximize the
overall well-being of society (Bentham 1789; Mill 1895). In
short, it holds that an action is moral if that action maximizes
the overall utility of all agents. We consider a moral princi-
ple that requires a policy to select actions that maximize the
value of all agents within some tolerance.
Definition 14. The Act Utilitarian moral principle, ρU , is
expressed as the following equation:

ρU (π) =
∧
s∈S

[
π(s) ∈ τ

arg max
a∈A

∑
i∈M

V̌ ai (s)
]
.

The utility maximization operator, arg maxτa∈A, returns
the set of actions that induce a sum of the future expected
values for all agents,

∑
i∈M V̌ ai (s), within a tolerance

τ of the maximum sum over the future expected values
maxa∈A

∑
i∈M V̌ πi (s).

All moral principles offered here use a tolerance, τ , to
achieve flexibility during policy generation similar to the
concept of slack (Wray, Zilberstein, and Mouaddib 2015).
In these moral principles, τ is additive and thus its scale is
meaningful relative to the scale of the value functions within
the moral community. In general, models of moral commu-
nity members may not contain value functions with compa-
rable scales. In this case, the value functions of moral com-
munity members can be normalized and the above principles
can be rewritten using a multiplicative τ in the interval [0, 1].
This will apply constraints relative to the scale of the value
functions of individual moral community members.

The computational complexity of generating the con-
straints representing moral principles is shown in Table 1.
The Conjunctions, Operations, and Computations columns
show the number of logical conjunctions, an upper bound
on the number of arithmetic, comparison, and logical oper-
ations performed for each logical conjunction, and an up-
per bound on the number of total computations executed



Moral Constraint Conjunctions Operations Total Computations

cρG (µ) =∧a∈A,s∈S,i∈M
[
V̂i(s)− V̌ ai (s) > τ

]
µsa = 0 |A||S||M| |S|+3|S||S|2 +4 |A||S||M|(|S|+3|S||S|2 +4)

cρU (µ) =∧a∈A,s∈S
[
a′ 6∈arg maxτa′∈A

∑
i∈M V̌ a

′
i (s)

]
µsa = 0 |A||S| 3|A||M||S||S|2 +3 |A||S|(3|A||M||S||S|2 +3)

cρV (V ) =∧s∈S,i∈M,si∈Si [s ∼ si]|Vs − Vi(si)| ≤ τ |S||M||S| |V|+2 |S||M||S|(|V|+2)

Table 1: The moral constraints that have been derived from the moral principle of each ethical framework. Note that we use Iverson brackets
to represent the Boolean evaluation of the bracketed expression numerically, where TRUE evaluates to 1 and FALSE evaluates to 0.

for the given moral constraint, respectively. The complex-
ity for solving the resulting MDP is not shown and may
vary depending on the constraints and the underlying solu-
tion method, although solving for the optimal moral policy is
often faster than generating the constraints. The VOI princi-
ple is represented using the primal form and the GR and AU
principles are represented in the dual form. We use the vari-
able |S| to denote the state space size of ECAS and |S| as
a one-size-fits-all state space size for members of the moral
community. In general, members of the moral community
may have vastly different state representations. The bounds
here are tight if we define

|S| = 1

|M|
∑
i∈M
|Si|.

Transition-aware ethical frameworks appear to be quite
expensive. This is because calculating statistics or met-
rics over possible outcomes usually involves enumerating all
possible outcomes. Whether this is done agent by agent, as
with the Golden Rule, or in a single sum, as with act util-
itarianism, an estimate of a transition probability must be
established for every state of every member of the moral
community. This process can be approximated by consider-
ing a smaller moral community or by reducing the fidelity
of the models of moral community members. However,
these types of approximations may jeopardize performance.
One mitigating factor is that in many domains the transi-
tion functions may be sparse. In these cases calculations
can be skipped once a transition probability is determined
to be zero. In our experiments, with |S| = |S| ≈ 100 and
|M| = 4, we generated policies in under one second.

Lane Merging Example To generate an ethical context
for VOI, we first define a moral community model with state
spaces and value functions of other vehicle agents. Let us as-
sume the other agents share our goal, and so we use the state
space of our own agent and the value function produced by
generating an amoral policy. Veiled state factors could in-
clude those representing whether or not the agent has right
of way. Ethical contexts for the AU or GR principles also re-
quire impact and correspondence functions. We can define
these functions using the effects or restrictions our agent’s
state and action impose on the states of other agents. For
example, if our agent is at the front of the left lane, then the
correspondence function can evaluate the probability of any
other agent being in any state corresponding to the front of
the left lane as zero. Similarly, if our agent merges success-
fully, we know that any agent in our lane will transition to a
state one spot closer to the front.

Merged

Right of Way
Merging

ALLOW

CONTINUE

Figure 2: A simplified diagram of the lane merging MDP.

Experiments
In this section, we present experiments on a domain simulat-
ing lane merging for autonomous vehicles, such as for lane
closures during roadside construction. These experiments
are intended to illustrate the differences between different
ethical frameworks. There is no single correct framework as
they all constrain the resulting policies in different ways.

Lane Merging for Autonomous Vehicles
In this domain, we model the moral community as all other
vehicles on the road within a certain distance, all of which
are represented by an identical MDP. The state space of this
MDP is S = M×L×P×NR×NL. M = {FALSE, TRUE}
denotes whether or not the vehicle is currently moving.
L = {MERGING,RIGHTOFWAY} is the agent’s lane, and
P = {1, . . . , N} is the current position of the agent in
its lane, where 1 represents being next in line to merge in
one’s respective lane and N represents being last in line.
NL = NR = {0, . . . , N} represent the number of cars yet to
merge in each lane. There is a single, self-looping goal state
entered upon successfully merging. The action set A for
the agents with the right of way is {ALLOW,CONTINUE},
where ALLOW makes way for a vehicle in the other lane
to merge and CONTINUE simply continues driving, merging
oneself and preventing the car in the other lane from merg-
ing. All agents receive −1 reward for every time step they
have yet to reach the single lane segment of road. The tran-
sition function favors one lane over the other and also favors
cars in moving lanes over those in stationary lanes so that
in expectation agents in one lane tend to reach the goal state
sooner than agents in the other lane. A diagram of the do-
main is shown in Figure 2.

Experimental Results
Before analyzing the experimental results, we again empha-
size that there is no single best moral principle. Some may
apply more naturally to certain problems, but they are all
equally plausible a priori. Ethical codes of conduct have
been debated for thousands of years in moral philosophy,
and every major ethical theory ever advanced has produced



counterexamples that highlight what many philosophers and
the general public alike consider serious flaws. Our aim is
not to promote one ethical theory above another. Rather, our
goal is to study their differences when applied to a sequential
decision-making problem in the context of ECAS in order to
understand under what conditions different moral principles
permit different behavior.

To study the relative behavior of agents following differ-
ent frameworks, we created an instance of the lane merging
domain where N = 2. This problem instance captures all of
the same decision-making nuance as an instance where N is
very large and therefore suffices for the purpose of illustra-
tion. To generate the timing results, we solve problems of
increasing size up to N = 7 for a total of 14 agents, each
with over 1, 700 states.

Policies for qualitative analysis are generated using the
proposed ethical frameworks and varying τ , and are ana-
lyzed at several key states where the agent has the option to
either ALLOW or CONTINUE. In this domain, policies are
either unrealizable, always choose ALLOW, always choose
CONTINUE, or choose a mixture of ALLOW and CONTINUE
depending on the state. The unconstrained or amoral policy
always chooses CONTINUE. This does not mean ALLOW is
always the ethical choice, as the ethics of an action depend
on the state and the ethical framework. We now analyze the
results with respect to each ethical framework individually.

Act Utilitarianism The act utilitarianism ethical frame-
work (AU) has a unique property relative to the other frame-
works presented here in that it is always realizable (Table 2).
This may at times be an advantage, but it is not without com-
plications, as resultant policies may be realizable but not
suitable for deployment due to unbounded price of moral-
ity and unbounded objective values with respect to the orig-
inal problem. However, in addition to the obvious benefits
of always providing a valid solution, utilitarianism also al-
lows better exploratory options for understanding tradeoffs
in a domain. Because the effects of a given action are ag-
gregated across the entire moral community, as tolerance is
varied many policies may be optimal for at least some inter-
val. Thus, we frequently see AU offering the widest variety
of possible policies. This can be seen in Figure 3.

One drawback of the AU framework is its computational
complexity (Figure 3). Although theoretically expensive, we
find that the structure of the impact functions F and cor-
respondence functions P can substantially reduce compute
time in practice. Moreover, they are vital to effective op-
erationalization of these frameworks. We conducted an ab-
lation study where we replaced either the impact functions,
the correspondence functions, or both, with uninformative
versions that provided uniform belief over states (correspon-
dence functions) and transitions (impact functions). The re-
sults, shown in Table 3, clearly indicate that the structure of
F and P impact performance. This makes sense since both
models are required for the AU framework to reason about
the outcomes of possible actions.

The Golden Rule The Golden Rule ethical framework
(GR) uses the same information as the AU framework, but

calculates constraints individually for each member of the
moral community. This offers several advantages. First, al-
though unrealizability in general is not good, we view the
ability of ECAS to be unrealizable as a benefit. Unrealiz-
able problems give practitioners the ability to stop and re-
think both their technical approach and also whether an au-
tonomous system is the right solution in the first place. As
a result, unlike AU, policies generated using the GR frame-
work have bounded effects on other agents with respect to
their value functions. Table 2 shows two instances of the
lane-merging domain with different transition functions. In
GRD, there is an extra probability of causing an accident in
some states. Low tolerance values catch an expected risk
of endangering another agent that is too high in at least one
state, no matter the action, so the GR framework terminates
rather than produce an unsafe policy. A second benefit of
the GR framework is that it allows an incremental modeling
process since models do not interact. In AU, all models in
P and F are considered simultaneously, and values derived
from these models all mix in the same objective. The GR
framework can add or remove models without affecting its
ability to reason about the ethics of its decision with respect
to the remaining agents. The GR framework, like AU, is also
theoretically expensive (Figure 3) and has the same depen-
dence on the impact and correspondence functions (Table 3).

The Veil of Ignorance Unlike AU and GR, the veil of
ignorance ethical framework (VOI) is not transition-aware.
This results in substantially lower compute time (Figure 3).
The VOI framework is also one of the most strict which, as
with GR, may be situationally useful. It also allows for ex-
ploration of problems in new ways that are unavailable to
GR and AU. Table 2 shows how enforcing τ -equality across
different sets of veiled state factors, V = {L}, V = {M},
and V = {L,M}, can produce different realizable domains.

One drawback of the VOI framework is that the con-
straints are often overly restrictive. This can be challenging
to control since the number of constrained states grows ex-
ponentially with respect to the size of the set of veiled state
factors. A more finely controlled process for specifying the
set of states where τ -equality is desired could mitigate this
issue, although the connection to the veil of ignorance be-
comes tenuous. Using the VOI framework also places some
restrictions on how state spaces of moral community mem-
bers are represented. In AU and GR, models may be arbi-
trarily different as long as P and F are defined. Since VOI
directly compares states based on state factors, state factors
for members of the moral community must be a subset of
state factors of the agent.

Summary There are several results not specific to any one
ethical framework. First, the price of morality, ψ, expressed
as ‖V π

∗
ρ − V π

∗‖∞, does not always decrease when toler-
ance increases, even when the policy changes. In general,
as τ → ∞, ψ → 0, but different ethical frameworks may
take different trajectories through policy space. Moreover,
since these trajectories do not contain loops, some policies
are not producible by some ethical frameworks, regardless
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Figure 3: Policies and price of morality as a function of tolerance are shown for GR (left), and AU (center). The price of morality is indicated
with a blue line, and the vertical, shaded bars represent the different regimes within which a policy πk is optimal. Note that (1) regime
boundaries do not always coincide with changes in the price of morality and (2) GR and AU produce different policies, with the exception of
π7, which represents the always CONTINUE policy. Timing results for all frameworks are also shown on a log-log plot (right). The timing
plots for AU and GR are coincident, with theoretical scaling shown using dotted lines. The significant gap between predicted and actual time
for GR and AU can be attributed to correspondence and impact functions that take advantage of the sparsity in transition functions.

Ethics UNREALIZABLE ALLOW MIXED CONTINUE

AU – [0.00, 1.80) [1.80, 3.80) [3.80,∞)

GR – – [0.00, 0.48) [0.48,∞)
GRD [0.00, 0.50) – – [0.50,∞)

VOIL [0.00, 1.69) – –∗ [1.69,∞)
VOIM [0.00, 1.50) – –∗ [1.50,∞)
VOIL+M [0.00, 1.78) – –∗ [1.78,∞)

Table 2: Tolerance domains for types of policies. The left-most col-
umn denotes the ethical framework. The remaining four columns
indicate the range of tolerance values that produce each of the four
types of policies for this domain. A dash indicates policy types
that cannot be generated. The key takeaway is whether or not it is
possible to generate a given type of policy with a specific ethical
framework. Entries for VOI in the MIXED column have an asterisk
because stochastic policies can still be generated from these solu-
tions, but we have shown only results for deterministic policies.

of tolerance. Figure 3 shows how the same sub-optimal ac-
tion with respect to the task determines ψ in AU and GR.
However, as tolerance increases AU produces different poli-
cies without changing the price of morality. This indicates
that as tolerance increased the AU framework found a policy
which improved performance on the task, but the improve-
ment was not with respect to the most restricting constraint.
This shows that moral constraints do not always affect per-
formance in accordance with their restrictiveness. Although
better than modifying the reward functions directly, predict-
ing exactly which policy these moral principles will produce
within the bounds of their constraints remains challenging.
We suggest improving the interpretability of ECAS and sim-
ilar frameworks as an area with considerable potential.

Discussion
Clearly, explicit moral communities have both benefits and
drawbacks. However, analyzing tradeoffs requires going be-
yond comparisons of common performance metrics like ac-
curacy or efficiency. We discuss several important questions
surrounding the design of ethical decision-making systems
and outline some promising research directions at different
levels of design and points in the development pipeline.

Ethics UNREALIZABLE ALLOW MIXED CONTINUE

AUP – – [0.00, 23.43) [23.43,∞)
AUF – – – [0.00,∞)
AUP+F – – – [0.00,∞)

GRP [0.00, 60.00) – – [60.00,∞)
GRF – – – [0.00,∞)
GRP+F – – – [0.00,∞)

Table 3: The importance of impact and correspondence functions
in transition-aware ethical contexts. Rows marked by P and F sub-
scripts represent frameworks that have had their correspondence
and impact functions ablated with uniform distributions, respec-
tively. Subscripts P + F represent a simultaneous ablation.

Practical Limitations of Model-Level Interventions In
theory, MDPs and their variants, coupled with frameworks
such as ECAS, are as powerful as we could want. However,
the process of deploying them properly is complicated, and
in practice their benefits are often hard to realize. Modeling
other agents in enough detail to make accurate ethical judge-
ments is time consuming and requires several steps often
overlooked by AI researchers. Moreover some steps, such as
determining moral community membership, require exper-
tise outside of AI. Automated decision-making systems are
already deployed in contexts that are socially and culturally
more diverse than the AI research and development com-
munities themselves. Thus, in many cases, researchers and
developers will need to rely on local expertise from mem-
bers of impacted communities to determine the stakehold-
ers in a given decision. Even with a comprehensive list of
stakeholders, understanding agents’ preferences and values
requires considerable effort. Again, this is currently out-
side the purview of most AI research. Furthermore, these
processes likely cannot be crowdsourced. Mechanical Turk
or Moral Machine (Awad et al. 2018) results are not spe-
cific enough to the application context to be useful. These
questions require meetings and discussions with stakehold-
ers, perhaps mediated by experts in the social sciences who
have familiarity with concepts many stakeholders may want
reflected in decision-making models.

Only after identifying stakeholders and understanding a
proposed system’s effect on them can the process of reflect-



ing their values within the system begin. In ECAS, this is
the process of developing the ethical context. While ECAS
solves a small part of this pipeline, the remaining challenges
of systematizing and regulating ethical context construction
are substantial. We see this as a call to action for interdisci-
plinary work between researchers in AI, HCI, ethics, sociol-
ogy, psychology, and many other related fields. One benefit
of explicit moral communities is that they force researchers
to name and describe who has moral considerability explic-
itly, as the failure to do so is a common weakness in contem-
porary AI ethics research. This is especially beneficial when
the moral community is heterogeneous and the concerns of
different members require unique considerations.

Given the magnitude of the task laid out above, it is rea-
sonable to ask two related questions: How do we determine
what level of model fidelity is required for safe and ethical
behavior? And how can we ensure that deployed systems
meet this threshold? Both questions seem well-suited for re-
search on guidelines and standards. Setting such standards
for hypothetical systems is challenging, in part because it is
impossible to predict the scope of future applications. How-
ever, ECAS and frameworks like it have started to reduce the
uncertainty of some ethical decision-making systems with
respect to their design. This creates research opportunities
for both empirical studies addressing model fidelity met-
rics and requirements as well as development of best prac-
tices for specific systems as is the norm in domains such as
aviation, medicine, construction, and software engineering.
Moreover, developing and iterating on well-defined systems
gives researchers the ability to solve domain-specific chal-
lenges, leading to better behavior specifications, more de-
ployment options, better data collection, and clearer under-
standing of the limits of certain approaches.

Predicting Errors in Human Design Many decision-
making problems require approximations to solve or model
tractably. However, not all approximations are subject to the
same scrutiny. For example, while approximate algorithms
are often a last resort, they are at least well understood math-
ematically. The flaws in their output occur with respect to
an agreed upon and understood objective. Approximations
made by modelers as they choose which aspects of the prob-
lem to model, on the other hand, are less predictable. More-
over, these approximations do not follow any standards, do
not offer any formal guarantees, are rarely communicated or
justified to end users, and may be subjective and depend on
the intuitions of the designer. Furthermore, the domain of
such decisions is so expansive that the task of simply keep-
ing track of which variables of a problem have been modeled
and which have been marginalized can be challenging.

Such pre-code approximations can lead to a variety of
shortcomings in deployed systems and may even prevent
some techniques from working properly. For example, an
automated meal planner for helping users maintain a healthy
diet may omit many variables beyond nutrition that con-
tribute to one’s overall welfare with respect to food. These
could include restrictions due to allergies, restrictions as-
sociated with religious practice, individual taste preference,
preference due to cultural or sentimental value, cost of ingre-

dients, ease of procurement, ease of preparation given avail-
able tools and abilities, whether or not the meal needs to feed
dependents in addition to the user, and perhaps even exter-
nalities such as the carbon footprint of various ingredients or
the labor practices of suppliers. If the meal planner simply
optimizes nutrition and ignores the other variables, then the
end user experience will be noticeably lacking even though
the algorithm finds the optimal solution within its model.

Ethical decisions exacerbate this problem since they are
often holistic, considering a larger and more diverse set of
variables than AI researchers are used to dealing with. Be-
cause efficacy of these systems is determined by humans,
who have access to the full range of relevant variables, sim-
plifications made during design can no longer be thought of
as reducing the complexity of the problem. Instead, they are
approximation techniques, whose use comes with expected
loss in performance. Through this lens, design decisions in
ethical AI systems are perhaps even more important than al-
gorithmic decisions, and we should aim to understand the
origins, scope, patterns, and remedies of errors introduced
during this stage through novel interdisciplinary research.

One example of such research is to catalogue the approx-
imations made in modern decision-making models. What
types of variables are marginalized most frequently? Do
they represent social status or groups an individual identifies
with? Do they represent higher-order effects or feedback
loop effects? Are they quantities or concepts that are hard to
measure? Or do they simply have a high number of possible
values that would greatly increase the size of the state space?
As before, this process of identifying hidden or marginalized
variables requires expertise from both AI and disciplines be-
yond engineering. Forming a taxonomy of such design level
approximations and studying the shortcomings of different
taxonomic classes could accelerate progress on ethical deci-
sion making and lead to more meaningful standards of de-
velopment and better accountability for ethical AI systems.

Communicating Ethical Capabilities The challenges
real-world ethical AI agents face, coupled with inevitable
approximations required for tractable systems, generate two
important questions. When are approximate ethical frame-
works acceptable given that their purpose is to guard against
other forms of corner-cutting in the development process?
And when are systems that rely on implicit moral communi-
ties acceptable, as they are more susceptible to design over-
sights due to their potential to marginalize a more variables?
We argue these methods may be acceptable, provided their
shortcomings and assumptions are communicated clearly.

Other fields of research concerned with fairness or bias,
such as natural language processing, have often struggled to
communicate decisions about system design, dataset collec-
tion, or test design to real-world user experience (Goldfarb-
Tarrant et al. 2020; Blodgett et al. 2020). Framed more gen-
erally, producing fair, just, or ethical decision-making sys-
tems concerns not only optimizing for the right metrics, but
also following a vastly more expansive and inclusive process
of understanding the problem, the deployment context, and
the likely impact of proposed solutions (Selbst et al. 2019).
We see communication about these processes themselves as



a major hurdle for contemporary AI ethics research, and it is
likely that without due diligence AI ethics research will face
challenges wherein claims of applicability or portability do
not hold up against evaluation in real-world scenarios.

Key to communicating the capabilities of a system is the
ability to delineate where, how, and why approximations
were made at both the design level and the model level. In
ECAS, this is the need to quantify the effects of approximat-
ing ethical frameworks. For small problems one may begin
with as extensive a model as possible and choose subsets of
this model to solve, making the simplifying design choices
explicit and accessible for support and critique. Methods for
data collection, annotation, or prior beliefs could be enumer-
ated similarly. For most problems, this process is intractable,
and we must rely on authors to make their normative or sim-
plifying assumptions explicit in their writing. Here too, stan-
dards for decision-making systems may help. Just as stan-
dards exist for communicating the provenance, testing, po-
tential hazards, and capabilities of many consumer products,
we argue standards for communicating analogous features
of decision-making systems are necessary for their effec-
tive deployment. These types of standards not only promote
transparency and user trust but also assist debate and abla-
tion analysis. Clearly communicating and justifying norma-
tive assumptions and design choices is crucial for both re-
producibility and uncovering implicit or tacit assumptions.

Towards Actionable Research and Deployable Systems
Underlying many issues discussed so far are the additional
complications or constraints that arise when systems move
from the laboratory to the open world. Many applied com-
puter science disciplines, such as robotics, computer vision,
and databases, partially address these challenges by adopt-
ing experimental practices that try to mimic real-world sce-
narios. Here, we outline several ways in which research on
ethical decision making could benefit from this approach.

First, realizing end-to-end systems forces researchers to
narrow their scope of inquiry to target specific domains. The
process of elucidating a problem from the perspectives of
multiple stakeholders, processing real data, and connecting
data to core algorithms often surfaces serious shortcomings
in systems, models, or algorithms, which are not obvious at
a theoretical level. Moreover, these insights often highlight
areas for research and innovation. Many poor assumptions
are only surfaced by implementing working systems.

Second, testing end-to-end systems drives research on
evaluation techniques. Since ethical decision-making sys-
tems will be integrated into daily life, new metrics are
needed, perhaps including measures of human agreement
with machine decisions, decision interpretability, or the in-
teractability or modifiablity of systems. Additionally, novel
metrics for model fidelity or the degree to which systems
consider different classes of variables may play a role in de-
termining the applicability of a given system.

Third, end-to-end systems allow researchers to iteratively
refine techniques, as well as to collect rich data sets and es-
tablish applications. Such benchmark data sets and prob-
lems have been invaluable for many fields. While bench-
marks may reward algorithms that perform well on bench-

marks at the expense of generalization, we are not con-
cerned since high-performance ethical decision-making sys-
tems, rather than generalizability, is ultimately the goal.

In summary, we believe advancing our understanding of
ethical decision-making systems relies on the process of cre-
ating end-to-end prototype systems. Such exercises are valu-
able for uncovering shortcomings in existing theory and pro-
moting interdisciplinary collaboration, which we see as vital
to realizing performant ethical decision-making systems.

Takeaways We have discussed several related challenges
facing the development of ethical AI agents, and we summa-
rize them here as considerations for future research.
• Doing due diligence to properly understand the social

context around a problem and how solving it affects the
community in which the system operates is paramount to
the system’s success. This process is necessarily effortful
and interdisciplinary, and currently under-researched.

• Approximations are unavoidable, but we can mitigate
their harmful effects by studying their flaws, predicting
their occurrence, and developing policies and algorithms
which reduce their severity or necessity. This is true
of both model-level approximations and design-level ap-
proximations, the latter of which are not well understood.

• Ethical decision-making systems operate in larger tech-
nical systems, such as robots, who themselves operate
in the social context of their deployment. Studying eth-
ical decision-making systems in conditions closer to their
eventual deployment context is often the only way to dis-
cover fundamental flaws in previously proposed theoreti-
cal agents.

• There is a missing link in the literature between re-
searchers building and deploying ethical AI systems de-
signed for specific problems and standards or principles
designed for any generic AI agent. Work on develop-
ing standards and principles for specific pipelines and
systems, which are more actionable and more verifiable,
would be welcome additions to the existing literature.

• Underpinning all of these foci is the imperative to write
and communicate clearly. In particular, we need to sur-
face and justify design and engineering decisions and
their underlying normative assumptions.

Conclusion
In this paper, we defined the concept of a moral commu-
nity in the context of ECAS and presented several ethical
frameworks within the ECAS model that use moral com-
munities. We provided some theoretical analysis of these
frameworks, some experiments building intuition about how
different principles can generate different behavior, and a
discussion on the broader implications and limitations of
these types of ethical agents. Future work will include ex-
tensions and improvements to these frameworks and novel
solution methods for broader classes of decision processes.
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