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Abstract

Tree search is an important component of many decision-
making algorithms but often relies on an evaluation func-
tion that estimates the desirability of each node. In this pa-
per, we propose to learn which nodes to expand based on a
variety of object-level features. We introduce a reward func-
tion for this problem based on value of computation estimates
with respect to improving the policy for the underlying prob-
lem. We apply deep reinforcement learning to this problem in
an approach we call Reinforcement Learning for Tree Search
(RLTS) and demonstrate that it can yield better performance
than baselines in a procedurally generated environment.

1 Introduction

Planning algorithms that use tree search have been devel-
oped for many real-time decision-making problems, such
as autonomous navigation (Koenig and Likhachev 2005),
multi-robot coordination (Vedder and Biswas 2021), and
trajectory optimization (Karaman et al. 2011). Simply put,
these algorithms build a search tree from a start state to
a goal state by expanding child nodes given an evaluation
function. For instance, when selecting each child node to
expand, heuristic search uses an estimate of the distance to
the goal state (Hansen and Zhou 2007) while Monte Carlo
tree search uses a measure that balances exploration and
exploitation (Browne, Powley et al. 2012). However, while
these algorithms rely on evaluation functions that reflect the
desirability of each child node, there have been efforts to de-
velop metareasoning approaches that explicitly reason about
how to build a search tree.

A particularly promising approach to metareasoning was
introduced by Russell and Wefald (1991). In order to opti-
mize a notion of time-dependent utility that considers both
the value of a solution and the cost of computation, they in-
troduced a meta-level decision problem with computational
states and actions that guides a planning algorithm over an
object-level decision problem. Hence, a solution to the meta-
level decision problem is a meta-level policy—a mapping
from computational states to actions—that attempts to opti-
mize time-dependent utility. Naturally, when this approach
is instantiated in the context of tree search, the meta-level
decision problem includes states for all possible search trees
and actions for all possible node expansions.

While this approach offers a useful framework for metar-
easoning, it relies on exactly computing the time-dependent
utility to find an optimal meta-level policy. This involves

computing an expectation over all possible trajectories of
computational states and actions, which is infeasible for
planning algorithms that use tree search given the com-
plexity of its space of search trees and node expansions.
Hence, there have been several approaches that compute a
meta-level policy by approximating time-dependent utility
in some form (Hay et al. 2012; Callaway et al. 2018). How-
ever, while these approaches are effective in simple domains,
they are challenging to scale up to large domains with con-
tinuous state and action spaces.

In this paper, we propose a novel approach that uses deep
RL to optimize node expansion selection in tree search to
maximize a reward function based on the value of compu-
tation (Matheson 1968; Russell and Wefald 1991). To do
this, we introduce a meta-level decision problem that is con-
structed using a function Q*(s,a) that estimates optimal
object-level Q-values for states s and actions a. In our exper-
iments, we show that our approach yields significant object-
level performance gains over baseline techniques, especially
with low quality initial ()-value estimates, on the BigFish
Procgen benchmark (Cobbe et al. 2020).

The rest of this paper proceeds as follows. Sections 2, 3,
and 4 define the meta-level/object-level decision problems,
how to calculate policies from search trees, and how to es-
timate the value of computation to generate meta-level re-
wards. Sections 5 and 6 introduce our Reinforcement Learn-
ing for Tree Search (RLTS) approach and evaluate it on the
BigFish Procgen benchmark. Section 7 concludes the paper.

2 Related Work

There has been a large body of work on metareasoning
designed specifically for blackbox algorithms. First, there
are methods that determine the optimal stopping point of
the algorithm by tracking the performance of the algorithm
and estimating its stopping point (Hansen and Zilberstein
2001; Lin et al. 2015; Svegliato, Wray, and Zilberstein 2018;
Svegliato, Sharma, and Zilberstein 2020; Svegliato 2022).
Next, there are methods that calculate the optimal parame-
ter tuning of the algorithm based on properties of the spe-
cific problem at hand (Urmson and Simmons 2003; Hansen
and Zhou 2007; Sun, Druzdzel, and Yuan 2007; Akgun and
Stilman 2011; Kiesel, Burns, and Ruml 2012; Bhatia, Sveg-
liato, and Zilberstein 2021). Finally, there are methods that
use RL to learn to tune the parameters of the algorithm on-
line (Biedenkapp et al. 2020; Bhatia et al. 2022).

Extending this work to multiple blackbox algorithms,
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Figure 1: An illustration of applying an expansion ‘computational action’ £ to a meta-level environment. On the left, at time ¢, we have the
search tree 1. Nodes that can be expanded are colored green, while those that cannot are blue. Each arrow represents taking a given action
from the state specified in the parent node. The action £ expands the node highlighted with the yellow circle, thereby the corresponding node
in tree 1¢+1 has 4 children; one for each object-level action. We can also see representations of the greedy search tree policies my, and my,
at each time step, visualised as low-opacity overlay renders of the BigFish Procgen object-level environment. At time ¢, the agent’s (the green
fish’s) plan is to traverse continually left and up. After the expansion, the plan is to go up and left until it reaches the small fish, at which
point it can change to moving right and eat the other two fish. Finally, below the arrow indicating the action, we have an expression for the

value-of-computation reward 7y given for this expansion.

there are methods for optimal selection from an algorithm
portfolio, recognizing that different algorithms tend to dom-
inate each other on different problems. For example, there
are methods that select the best algorithm for recovering
from different exceptions or safety issues (Svegliato et al.
2019, 2022), the best algorithm for solving hard computa-
tional problems (Gomes and Selman 2001; Xu et al. 2008),
and the best abstraction for solving Markov decision pro-
cessees (Nashed et al. 2021, 2022). However, while these
methods are designed for blackbox algorithms, our approach
selects each individual computation to perform at runtime.

Metareasoning has also been applied to online planning
(Gu et al. 2022) and situated temporal planning (Shperberg
et al. 2020, 2021). Moreover, metareasoning has been used
to learn search policies in a classical planning setting (Go-
moluch et al. 2020). This work evaluates policies based on
solving a search problem and optimizes policies with the
cross-entropy method. In contrast, our approach solves the
problem with reinforcement learning and evaluates search
policies using value of computation estimates.

3 Meta-Level Decision Problem

We first define the meta-level decision problem that directs
tree search over the object-level decision problem. Here, the
goal is to find a meta-level policy that builds a search tree in
a way that optimizes time-dependent utility, which involves
selecting a computational action (node expansion) in each
computational state (search tree). Finally, once this search
tree is built, it is used to compute an object-level policy.

Definition 1. The object-level decision problem is an MDP
M = (S, A, T, R,v), where S is the set of states, A is the set
of actions, T'(s, a, s') is the transition function, R(s,a,s’) is
the reward function, and v is the discount factor.

Given an object-level MDP M = (S, A, T, R,~), we de-
fine a search tree 1) € V¥ as a recursive data structure com-
prised of search tree nodes. A node n, € Ny is a tuple
(s,C), where s € S is an object-level state and C is a set of
child nodes with the actions performed and the rewards ob-
served when reaching the child: (a,r,¢) € C C AXx RxNy.

A node expansion on a search tree node ny, = (s,C) € 9 is
an operation { € Z(v) that modifies n,’s children: C «+
CU{(a,R(s,a,s"),(s',0)) :Va € A, s ~ T(s,a)}, which
is denoted ¢’ = £ o). Given a search tree v, we compute an
object-level policy 7, (als) with a process described later.
To perform tree search over the object-level decision
problem, the meta-level decision problem either expands a
node or terminates the search depending on whether the ex-
pected improvement to the object-level policy outweighs the
cost of computation. Formally, we express this as the MDP
below and illustrate a transition of the MDP in Figure 1.

Definition 2. The meta-level decision problem that directs
tree search over an object-level MDP M is an MDP M =

<q]7 S’ A7 T’ R? ’7>.

* U js a set of possible search trees over M.

+ S =NxWUisaset of meta-level states: each computation
state 5 = (t,%) € S indicates that tree search has the
search tree ¢ € VU after computing for t € N time steps.

« A = {L}UZE is a set of possible meta-level actions:
the terminate action L terminates the search and each
computation action § € Z(v) performs a node expansion
onatree ) € V.

e T:SxAxS — [0,1] is a transition function that repre-
sents the probability of reaching a state 5 = (t',¢)') € S
after performing an action §{ € Ain a state 5 = (t, ) €
S': the transition function 3 ~ T(5' | 3,€) is

o {(07%/) ife=L

(t+1,£0%) otherwise
where s’ ~ T(s' | s, my(als)), s is the object-level state
at the root of Y, and 14 is a root tree with a single node.

. E tSxAxS >R is the meta-level reward function
R((t,¥),a, (t',¥") = Re(¥,a,¢") —C(t,a,t'), where
Ry is the reward for node expansions and C' is the cost
of node expansions.

* 7 is the meta-level discount factor.



4 Calculating Object-Level Policies

We now turn to how an object-level policy my(als) is cal-
culated from a search tree 1. The key idea is to use the
information contained in the search tree v to calculate im-
proved estimates of the optimal (Q)-values Q;(s, a) for the
object-level state-action pairs (s, a). Formally, starting with
an unconditioned (Q-value estimate Q*(s,a), we define a
tree-conditioned (Q-value estimate Q:‘p (s,a) as follows:

S

T+ ymaxgea QZ(S’,G/) 3 (a,r,ny) €Cy,
Q" (s,a)

Note that C;z is the set of children from the node n, in the
tree ¢ encoding object-level state s (if this node exists). In-
tuitively, this tree-conditioned (-value estimate recursively
applies Bellman back-ups using the trajectories observed in
the tree until it reaches a leaf node. For each leaf node, it
defaults to the unconditioned Q-value estimate.”

Naturally, a greedy object-level policy takes the optimal
action with respect to the tree-conditioned ()-value estimate

Qf/)(s, a) (with ties broken randomly):

otherwise

@@@:{

my(8) € arg max be (s,a)
a€A

We now show that the tree-conditioned (J-value estimate
is constructed such that the optimal object-level policy can,
in theory, be attained through tree search.

Theorem 1. Given a deterministic object-level decision
problem, there exists a meta-level policy T such that for any
choice of Q* the resulting tree 1) converges Q;L (Sroot, @) tO
Q* (8root, ) for all actions a.

Proof (Sketch) 1. Adapting the standard Bellman-
optimality equation for Q* to a deterministic environment
simplifies to the expression in QAZ for the case that there ex-
ists a child node. Therefore, for a tree of infinite size where
all nodes have children, QA;‘L = Q¥. Further, for a tree where
all nodes of depth d or less have children, we have that

Q" = @yl < | max max (Q"(s',0') = Q"(s',")

sleLsa’€A

where s € L, is the set of states on leaf nodes. So, to con-
verge towards the optimal Q-function, the meta-level policy
7 can perform breadth-first such, with the estimation error
decreasing by O(~y?). Note that constructing a tree of depth
d is expensive and requires O(|A|**1) computational steps.

5 Calculating Meta-Level Rewards

Our approach to designing the meta-level reward function
Ry is to incentivize selecting computational actions that are

'In this paper and the experiments, we assume that the object-
level decision problem is deterministic in the interest of simplicity.

2If object-level states appear multiple times in a search tree, ag-
gregating Q-value estimates from each branch and handling cycles
can improve pr In this paper, we omit these details as they are not
relevant to the object-level decision problem in our experiments.

expected to be ‘worthwhile’ in that they have a high value of
computation (VoC). Russell and Wefald (1991) define VoC
as the difference in expected utility for performing the best
action a¢ after computation ¢ and the expected utility for
performing the best action ag before computation : V(¢) =
E[U(a¢)] — E[U(ap)]- In practice, resource-bounded agents
are not capable of computing these expected utilities, so they
are instead estimates that depend on the computational state
z of the agent: V*(¢) = E[U(a¢)] — E[U(ao)].

To apply this to our meta-level decision problem, we
first define expected utilities as object-level value estimates.
These are estimates of a policy 7’s expected discounted re-
turn from a state s, evaluated using the tree :

73(s) = 3 wlals) 035, a)
a€A
m@m={EQ§W>awnﬂe%

Next, we need to compare the value estimates of the
object-level policies my, and m,, before and after a se-
quence of node expansions &1,...,&p. These value esti-
mates are computed with respect to the current state s,.,0; €
S of the object-level environment. Bringing this together re-
sults in the following expression for the estimated VoC over
a series of node expansions:

]A/i/’T (51» oo agT) = VJ:T (sroot) - VJ;)O (Sroot)

For brevity, we will denote the expected value estimates
from the root states of the search tree policies at time ¢ (eval-
uated using the tree at time T') as ng (Sroot) = VTt

Finally, since the optimization objective of the meta-level
environment is to maximise the value of computation over
a series of node expansions ]A)(fl, ..., &r), the meta-level
rewards of each computation is achieved by rearranging the
VoC into a sum over each transition:

otherwise

T
Vyr(&r,. o &r) = Vi VR => Vi - Vi
t=1

o Ry (W1, &) = VA — Vi

Note that computing each V} in the expression for Ry re-
quires the search tree from the end of the meta-level episode,
1. Therefore rewards can only be retroactively assigned to
trajectories when the episode terminates.

Lemma 1. The meta-level VoC return f@T (&1,...,&r) is
always greater than or equal to zero.

Proof (Sketch) 2. This is equivalent to asserting that VI >
V2. The policy Ty is greedy according to the ()-value esti-
mates in 7, meaning that by definition it has the maximum
attainable value according to VwT.

This lemma tells us that a meta-level policy optimizing
the VoC return will never be directly punished for perform-
ing computation. The metareasoning principle that the in-
trinsic utility is always positive is also satisfied, and thus the
pressure to balance computation with resource limits can be
controlled via the cost of computation function.



Lemma 2. If the policy remains the same after the search,
the value of computation is zero.

Proof (Sketch) 3. I[f my,. = my, then V = V2 — V2 = 0.

6 Learning to Plan with Tree Search

In this section, we use deep RL to solve the meta-level de-
cision problem, an approach we call Reinforcement Learn-
ing for Tree Search (RLTS). This requires three components:
(1) a tensor representation of a search tree to provide obser-
vations to the neural network meta-policy 7; (2) a suitable
DNN architecture for the meta-level policy 7; and (3) an un-

conditioned (Q-value estimate Q*

(1) The tensor representation of a search tree is a tree to-
kenization, where each node is expressed as a vector (fo-
ken) of structural and environmental features. The key struc-
tural features include a node ID represented as a positional
embedding of the node’s index, the parent’s node ID, and
whether the node can be expanded. The key environmen-
tal features are the object-level reward observed after tran-
sitioning to the node, an encoding of the action performed
to transition from the parent node to the node, the sum of
object-level rewards generated along the trajectory leading
to the node, the estimated discounted return attainable from
the node’s state (max, Q@*(s,a)), and an encoding of the
node’s object-level state.

(2) The meta-level policy 7 is composed of a shallow
Transformer (Vaswani et al. 2017), where the inputs are the
search tree tokens and the outputs are a vector correspond-
ing to meta-level actions. During training, we use Proximal
Policy Optimization (PPO) (Schulman et al. 2017), which re-
quires an actor network and a critic network (without weight
sharing). For the actor network, we pass each of the trans-
former output vectors through a dense layer (with no activa-
tions) to result in an action logit for each of the correspond-
ing meta-level actions. For the critic network, we sum to-
gether all of the transformer output vectors and use another
dense layer to produce value estimates.

(3) The unconditioned Q)-value estimate Q* is learned by
applying RainbowDQN (Hessel et al. 2018) to the object-
level decision problem.

7 Procgen BigFish Experiments

In our experiments, we apply RLTS to the BigFish envi-
ronment from the Procgen Benchmark (Cobbe et al. 2020).
Procgen is considered here because procedurally generated
environments are simple yet diverse, meaning that the agent
cannot memorize a sequence of actions to succeed. Further,
we used BigFish as it is one of the most reliable environ-
ments for training RainbowDQN. Our RainbowDQN model
is a CNN with a penultimate hidden layer of 512 units.
These vectors are extracted and used as state embeddings for
the search tree tokens. We trained this (-value estimate Q*
for 1.2M training steps and saved checkpoints of the model
each time it improved in evaluation performance. The check-
points are sorted so that we can pick the model at a given
performance quantile, in order to have access to a variety of
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Figure 2: Mean object-level returns for different meta-level policies
using pretrained models at varying performance quantiles.

Q functions of differing quality. We trained four meta-level

(RLTS) policies using Q* checkpoints at the pretrained per-
formance quantiles 0.25, 0.5, 0.75, and 0.9.

In the meta-level decision problem over BigFish, we re-
strict the object-level action space to combinations of the ar-
row keys, resulting in 8 actions. All Procgen environments
share the same set of 15 possible inputs, but 7 of these do not
do anything in BigFish. This therefore reduces the branch-
ing factor of tree search from 15 to 8. The search trees are
capped at a size of 64 nodes, meaning that if a policy at-
tempts to expand beyond this limit the meta-level episode
forcibly terminates. Upon termination with the final search
tree ¥, an object-level action is sampled from 7, and
taken in the object-level environment. The resulting state of
the object-level environment is used as the root in a new
search tree in and another meta-level episode commences.

To evaluate the learned policies for each pretrained per-
formance quantile, we compare them to the greedy object-
level baseline Q* that does not perform any search and two
meta-level baselines. The random meta-level baseline se-
lects valid node expansions at random. The A* meta-level
baseline, a variant of the A* heuristic search, selects valid
node expansions that maximize f(n) = g(n) + h(n), where
g is the discounted sum of rewards observed from the root
node to the node n and h is the discounted value estimate
74 max, Q*(s,a), where s is the object-level state associ-
ated with n. For each meta-level baseline, we measure the
object-level return as it completes consecutive meta-level
episodes and performs actions in BigFish. Across all eval-
uations, the random baseline gets a mean object-level return
of 95.7, A* gets 105.8, and RLTS gets 114.2. Figures 2 and
3 show the results of our experiments.

First, notice that all meta-level baselines significantly out-
perform the object-level baseline that greedily maximises
over Q*. Even the random baseline, which generally per-
forms the worst of the meta-level baselines, provides ap-
proximately 3-5x higher returns than without search. The
A* meta-level baseline steadily increases in performance
inline with Q* However, our RLTS approach consistently
performs well across all pretrained performance quantiles.
When Q* is under-trained (quantiles 0.25 and 0.5), RLTS
can compensate and outperforms the baselines. When Q*
is more refined (quantiles 0.75 and 0.9), RLTS and the A*
meta-level baseline have approximately equal performance.
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Figure 3: Distributions of object-level returns for each meta-level
policy using the pretrained model at the 0.25 performance quantile.

Interestingly, the best performance is achieved when
RLTS is applied to the 0.5 quantile. A hypothesis for this is
that the more trained models are more confident in their es-
timates and less able to be ‘persuaded’ to change given the
limited number of expansions. This is consistent with an-
other observation that the mean meta-level return decreases
as Q* is trained. Recall that meta-level reward is given only
if the policy changes (Lemma 2), and is awarded proportion-
ally to how much better the new policy seems.

8 Conclusion

This paper offers a formalization of tree search as a meta-
level decision problem and proposed a deep reinforcement
learning approach. To provide a learning signal, we de-
fine the meta-level rewards using an estimate of the value
of computation. We demonstrate that our approach outper-
forms hand-crafted methods and learn to compensate for un-
der performing pretrained Q-networks. However, our work
is limited to a straightforward environment and a short com-
putational horizon. Future work will explore how to balance
the trade-off between value and cost of computation.
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