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Abstract9

Building autonomous systems for deployment in the open world has been a longstanding objective in both artificial intelligence
and robotics. The open world, however, presents challenges that question some of the assumptions often made in contemporary AI
models. Autonomous systems that operate in the open world face complex, non-stationary environments wherein enumerating all
situations the system may face over the course of its deployment is intractable. Nevertheless, these systems are expected to operate
safely and reliably for extended durations. Consequently, AI systems often rely on some degree of human assistance to mitigate
risks while completing their tasks, and are hence better treated as semi-autonomous systems. In order to reduce unnecessary reliance
on humans and optimize autonomy, we propose a novel introspective planning model—competence-aware systems (CAS)—that
enables a semi-autonomous system to reason about its own competence and allowed level of autonomy by leveraging human
feedback or assistance. A CAS learns to adjust its level of autonomy based on experience and interactions with a human authority
so as to reduce improper reliance on the human and optimize the degree of autonomy it employs in any given circumstance. To
handle situations in which the initial CAS model has insufficient state information to properly discriminate feedback received from
humans, we introduce a methodology called iterative state space refinement that gradually increases the granularity of the state
space online. The approach exploits information that exists in the standard CAS model and requires no additional input from the
human. The result is an agent that can more confidently predict the correct feedback from the human authority in each level of
autonomy, enabling it learn its competence in a larger portion of the state space.

Keywords: probabilistic planning, human-agent systems, competence-aware systems, risk-aware autonomy, adjustable10

autonomy, decision making under uncertainty11

1. Introduction12

Autonomous systems are increasingly deployed in the open world, involving highly complex and unstructured13

domains. Examples of these systems include space exploration rovers [36, 63], autonomous underwater vehicles [20,14

54, 85], service robots [10, 43, 59], and autonomous vehicles [15, 16, 28]. Because it is infeasible to completely15

model the open world, these systems must rely on approximate models of their domains that may not be sufficient for16

handling every situation [78, 89], introducing potentially risky behavior when the system attempts to act autonomously17

where it is not competent to do so. Nevertheless, these systems are expected to maintain safe and reliable operation18

over the course of potentially long-term deployments. To accomplish that, they often rely on various forms of human19

supervision, assistance, and intervention. In that sense, many of the sophisticated AI systems under development20

today are at best semi-autonomous in that they operate autonomously only under certain conditions, and otherwise21

require human intervention in order to complete their assigned tasks [25, 104].22
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Reliance on human assistance has been explored extensively to address the limited competence of autonomous23

systems [33, 37, 46, 62, 66, 77, 93]. Often, this has been explored in the context of varying levels of autonomy, a24

paradigm for modeling gradations in autonomous behavior within a human-agent team [64, 83], where each level25

of autonomy corresponds to some set of constraints, limitations, or requirements on autonomous operation. For26

example, on the two extremes would be full autonomous operation, and full human control (no autonomy). This27

paradigm has already taken hold in several industrial applications where safety and reliability are critical, including28

driving automation [76], robotic medical devices [6, 34, 101], and autonomous legal reasoning [31, 32].29

Human assistance may be available in different forms or modalities, corresponding to different degrees of com-30

petence of a semi-autonomous system. Different forms of human assistance compensate for the limitations imposed31

in each level of autonomy and consequently mitigate the potential for risky behavior, while still ensuring that the32

system’s task is completed. For example, Veloso et al. [92, 93] designed the CoBot system that can aid humans in an33

office environment as an assistive robot in a variety of pick-up and delivery tasks. However, as the CoBot has no arms34

to grasp objects, it cannot perform its tasks entirely autonomously, and must instead seek assistance from humans to35

compensate for its limitation, for example by placing or removing objects in its basket. Ficuciello et al. [34] proposed36

a level of autonomy framework for a surgical assistive medical robot with four levels of autonomy, where the lowest37

two involve purely assistive actions to aid the human who is the primary executor, and the highest two involve fully38

autonomous execution by the robot with assistance from the human in the form of surgical strategy selection.39

In this work, we are primarily concerned with the risk associated with a system that operates at a level of autonomy40

that is inappropriate for a task given its capabilities; for instance, an office robot that autonomously handles fragile41

items it is not competent to handle safely (i.e., without a high risk of breaking). Hence, we aim to develop systems42

that are aware of their own competence, which we define to be the optimal level of autonomy to employ in any given43

situation conditioned on the availability of suitable human assistance. A system that is aware of its own competence44

when generating plans can therefore mitigate the potential for risky behavior by optimizing the degree of human45

assistance that it requests, leveraging the human where the system’s competence is low, and acting autonomously46

where it is high.47

To further mitigate risks, humans may impose constraints on autonomous operation based on the perceived com-48

petence of the system, for instance, by allowing them to intervene in time to prevent risky behavior or by disallowing49

autonomous behavior entirely. In fact, the perceived risks may be outside the scope of what the autonomous system50

can detect or reason about, hence enabling us to mitigate a broader range of risks. For example, a robot’s sensors may51

be unable to perceive black ice on a sidewalk, or a nearby obstacle in dense fog, leading to risky behavior if left to52

operate without supervision in these conditions.53

Determining the exact competence of an autonomous system at design time can be very difficult, particularly54

when the environment is not fully specified or is simply too complex to fully anticipate. For example, a self-driving55

car may initially be authorized to drive autonomously without supervision only on highways and during the daytime56

with clear weather. Hence, an initial level of autonomy may be determined a priori through testing and evaluation,57

but adjustments must be made when the system is deployed. Even when developers aim to err on the side of caution,58

initializing the level of autonomy to be below the system’s true competence, it is possible to unintentionally infer59

from initial testing that the system is more competent than it really is [69, 89]. Therefore, developing mechanisms to60

explicitly represent, reason about, and adjust the level of autonomy is critical for the success of autonomous systems61

deployed in the open world.62

We propose a planning model called competence-aware system (CAS) for operating at multiple levels of autonomy63

where each level is associated with different forms of human assistance that compensate for the constrained abilities64

of the system. Motivated by ideas from collaborative control [35], the structure of a CAS is illustrated in Figure 1.65

The model associates with each type of human assistance a set of feedback signals that the system can receive from66

the human, the likelihood of which can be learned over time. This model enables the system to operate more reliably67

in the open world, reduce improper reliance on the human and ultimately optimize the autonomous behavior of the68

system [5]. To address situations where the initial domain model has insufficient information to correctly model69

human feedback, we introduce an iterative approach to refine the system’s state space in order to better discriminate70

human feedback, producing a more nuanced partitioning of the state-action space with different levels of competence,71

and allowing the system to better learn and act at its true competence [4].72

One of the main characteristics of CAS is that the system must recognize the limits on its autonomy, but it is73

not required to know the reasons for these restrictions. This could be seen as a limitation, but we argue that it is an74
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Figure 1: An overview of how competence modeling impacts planning and execution. Here, the system’s current state is provided
as input to the system’s policy which traditionally would only output an action, but in our case also outputs a level of autonomy
determined by the competence model in which to perform the action. The level of autonomy dictates the type and degree of human
assistance used in the execution of the intended action. The human assistance can also provide additional feedback to the system,
which can be used to update and refine the competence model online.

advantage because it allows us to build autonomous systems that respect constraints on autonomy derived from human75

knowledge that is beyond the scope of the system’s reasoning abilities. While we allow situations in which the system76

does not have complete knowledge of the risks that justify the limitations on autonomy, the system may acquire that77

knowledge over time.78

Our contributions are three fold: (1) a mathematically rigorous formalization of competence for automated deci-79

sion making; (2) a planning framework for a competence-aware system that integrates a model of competence with80

a planning model to enable the system to reduce unnecessary reliance on humans and optimize its autonomous be-81

havior; and (3) a method called iterative state space refinement that enables a competence-aware system to refine the82

granularity of its state representation online. We provide a theoretical analysis of our model and algorithm, a concrete83

example of a CAS and considerations in its design and implementation, empirical evaluations of our contributions in84

simulation, and the lessons learned from a preliminary testing of the approach on an autonomous vehicle prototype.85

2. Related Work86

Researchers in automated planning [38] and reinforcement learning [87] have produced a vast literature devoted87

to models, languages and algorithms that enable agents to reason about their environment and choose actions intelli-88

gently. In this work, we specifically focus on advancing proactive reasoning under uncertainty about when and how89

to obtain human assistance in order to improve goal achievement or safety. We discuss below three areas of research90

that are particularly relevant to competence aware systems.91

2.1. Systems with Variable Levels of Autonomy92

Recognizing the value of human knowledge in planning has led to several research efforts on human-agent collab-93

oration in automated planning and control. Mixed-initiative planning/control [14, 18, 33, 37] is a paradigm based on94

mixed-initiative interaction [1, 48] wherein multiple different agents, generally a human an an autonomous system,95

can take the initiative to act at different stages to best utilize their respective abilities. Recent work has investigated96

applying mixed-initiative control in the context of variable autonomy [23] in which the level of autonomy (LoA) can97

change dynamically online. Chiou et al. [22] introduced the expert-guided mixed-initiative control switcher, which98

dynamically adjusts the level of autonomy based on a comparison of the expected performance of a task expert and the99

observed performance of the current system. Petousakis et al. [66] extended this approach by explicitly modeling the100

cognitive availability of the human based on real-time vision of the human to better inform the LoA switching decision101

between the autonomous agent and the human. Our work differs from this prior work in several key aspects. First, we102

assume that an automated planner determines the level of autonomy for the human-agent team, thereby designating the103

workload to both the human and the autonomous agent rather than allowing for each to initiate control on their own.104

Second, we are focused on the problem of learning the true competence of the human-agent system online through105

the acquisition of feedback from the human in response to actions taken by the agent at different levels of autonomy.106
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Finally, much of the previous work is either tied to, or focused on, systems with only two levels of autonomy—no107

autonomy and full autonomy—whereas we emphasize a general model for arbitrary levels of autonomy.108

Rigter et al. [72] considered a similar setting in which control of a system is selected from a set of autonomous109

controllers and a human operator. To reduce the reliance on the human over time, they propose to learn one of the110

controllers online from demonstrations gained from the human operator. While similarly motivated, we consider a111

slightly different problem setting. First, we consider one agent operating in different levels of autonomy, each of which112

may involve some degree of human assistance, rather than all-or-nothing involvement of the human, and allow for the113

level to change at every time step, rather than being fixed throughout an episode. The idea of learning a controller114

from human demonstrations is similar to how we propose to learn a model of the human’s transition function when115

they are in control, but in our case we use it only to predict their behavior, not to learn or alter autonomous control.116

Symbiotic autonomy is similar in that the aim is to enable the completion of complex tasks by distributing tasks117

and information across multiple agents. However, the term has been used both to represent human-agent systems118

where the two agents act asynchronously to perform tasks for each other, that is both the human and agent may seek119

assistance from the other to complete their task [75, 92, 93], as well as systems in which there is a smart environment in120

addition to the autonomous agent and human that provides auxiliary information to the autonomous agent to facilitate121

it [19, 25, 77]. Generally, our work differs in that we do not consider the environment and we emphasize the use of122

human assistance to better facilitate the completion of the autonomous agent’s task, rather than asynchronously acting123

in order to help the other agent with their task.124

Adjustable autonomy [13, 29, 62, 80, 81, 91, 103] is a closely related paradigm for human-agent teams that is125

characterized by the ability to dynamically change between different levels, or modes, of autonomy, each of which126

corresponds to some set of constraints or allowances that affect the actions the human-agent team can successfully127

perform. It is worth noting that these approaches are largely complementary, and there has been work specifically128

designed to combine multiple of these approaches [13, 60]. Our work falls generally in the category of adjustable129

autonomy, but adds two important capabilities to such systems, on top of the fundamental notion of competence.130

First, we explicitly model multiple forms of human feedback and use this feedback to enable a semi-autonomous131

system to learn its competence over time. Second, in the CAS model the system learns a predictive model of the132

human’s feedback allowing the system to converge to the optimal level of autonomy over time.133

2.2. Learning from Human Feedback134

Our approach is highly related to the general area of learning from human feedback. In reinforcement learning,135

some work has investigated the effect of additional information provided by a guiding human. Specifically, Chernova136

and Veloso [21] consider the inclusion of a guidance period after a robot’s action which can restrict the set of actions137

that the robot can take in the next step to improve the efficiency of the learning process. Moreira et al. [61] apply this138

method in the context of deep reinforcement learning to expedite the learning process of a deployed system in a new139

environment. Similarly, Rosenstein and Barto [74] propose a generalization to the actor-critic reinforcement learning140

framework [3] that includes a supervisor who can provide additional feedback to the system in the form of auxiliary141

guiding rewards, action selection guidance, or even direct control of the system. These differ from our work in that142

we assume that the agent has access to a well-defined and fully-specified model of its domain, including the reward143

(or cost) function from which to compute an optimal policy, and hence we are not concerned with learning a better144

world model online (rather, we are only concerned with learning the system’s competence model online).145

On the other hand, Knox et al. [50, 51] proposed a framework for training a robot solely from human feedback146

(sometimes called interactive shaping or interactive reinforcement learning) in which the human supervising the robot147

provides real-valued rewards for the actions that were just taken by the robot in a way that is assumed to account for148

the long-term impacts of the action. However, in our work we are not training the agent to act by learning a reward149

function, but rather providing the agent labeled data from which it can compute a distribution that is integrated into150

an explicit transition function. Additionally, we do not consider the use of real-valued feedback from the human, but151

rather discrete information tokens. More similar to our learning setting, Griffith et al. [41] proposed an approach in152

which the agent learns two policies in parallel, one derived from reward signals from the environment, and one derived153

from “right/wrong” labels from the human in order to infer what the human believes is the optimal policy, and then154

combines the two policies into one that is used for action exploitation. The key difference from Griffith et al. [41]155

is that we seek to learn a predictive model of the human’s feedback rather than what the human believes the correct156

policy to be, and then use this predictive model to analytically determine the optimal policy given the domain model.157
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Finally, Ramakrishnan et al. [70] examined a problem similar to what we consider in Section 5, wherein an158

autonomous agent trained in simulation may have “blind spots” when deployed in real-world environments driven by159

missing or ignoring features that are important in the real-world. Similar to how our method exploits human feedback160

to identify new features that the human is using in generating their feedback, their method applies imitation learning161

to demonstrations collected from the human to identify features used by the human but not by the agent. Our work162

differs primarily in the type of information that the human provides to the system as well as how the missing features163

are used. We integrate them into the existing model to improve the accuracy of the predicted human feedback which164

consequently improves the quality of the overall policies generated by the system. On the other hand, [70] use the165

learned information to learn blind spot models in the real world to perform safe transfer-of-control to a human when166

encountering a blind spot to avoid potentially dangerous situations.167

2.3. Competence Modeling168

The term competence has been used widely in the context of intelligent systems. The classification literature, in169

particular, has often defined the term as some measure of performance based on standard metrics for classification170

systems on their input space [53], including accuracy estimation [98], potential function estimates [71], Bayes-based171

confidence measures [47], relative performance to random guessing or otherwise randomized classifiers [95], and172

probabilistic models [56, 96, 97]. More recently, Platanios et al. [67] defined the competence of a curriculum learner173

to be the proportion of training data that the learner is allowed to use at any given time based on the difficulty of174

training samples, and Rabiee et al. [68] proposed competence as a distribution over failure classes that is learned175

via introspective perception in the context of robotic path-planning. Common across these examples is an evaluative176

approach to defining competence; that is, competence is a measure of the performance of a system or algorithm. Most177

closely related to the formalization of competence presented in this paper was suggested by Smyth and McKenna178

[84] who defined the competence of a case-based reasoning (CBR) system as the set of problems that the system179

can solve successfully. The authors provide a rigorous model and analysis of competence for CBR systems, but the180

work is highly specific to CBR systems on non-probabilistic domains, and consequently does not apply to stochastic181

decision-making processes considered in this work. Rather, our aim is to enable a system to handle all problems by182

utilizing the appropriate degree of human assistance to ensure safe operation.183

Instead, we borrow insights from the definitions of competence posed in the context of human workers. While184

many definitions have been proposed over the last several decades [30, 79, 86, 90], they are largely atomistic and185

lacking a well-defined mathematical representation. Gilbert [39] defined it as a function of the ratio of valuable186

accomplishments to costly behavior, which while mathematically precise, leaves unaddressed both the relative perfor-187

mative capabilities of different agents with respect to a given task’s satisfactory completion, an essential component188

of competence [42], as well as competence as an indication of authoritative permissibility. However, this definition189

together with the definition of competency as a performance capability implying performance at a stated level [90]190

inspires our definition formalized in Section 3.4. Intuitively, we propose that the competence of a system, much like191

that of a human, is the optimal level of autonomy to use conditioned on available resources. For example, we might192

say that a competent worker is one that knows when to perform tasks autonomously, when to ask for help and what193

type of help to ask for, or when to reach for additional sources of aid and information (e.g., via Internet search) to194

determine how to solve their task safely and reliably. Note that even human workers, when starting a new job for195

example, may not initially know their exact competence and instead must learn “on the fly” where and when they196

should solicit different forms of aid or assistance.197

3. Competence-Aware Systems198

We start with a description of a general competence-aware system that can operate in and plan for multiple levels199

of autonomy. Each level of autonomy is defined by a unique set of constraints on autonomous operation and consists200

of different forms of human feedback that can be provided to the autonomous agent. To enable the agent to reason201

about its own competence, it must have access to three different models: a domain model, an autonomy model, and202

a feedback model. Throughout this section, we use the problem setting in Example 1 as a running example to better203

illustrate the concepts and terminology that we introduce throughout the paper.204
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Figure 2: Illustration of Example 1.

205

Example 1. An autonomous vehicle (AV) with a human driver (shown in206

blue in Figure 2) encounters an obstruction (e.g., a parked truck) block-207

ing its lane on a one-lane road (red). In order to overtake the obstruction,208

the AV would need to drive around the obstruction necessarily driving209

through the oncoming traffic’s lane. In the oncoming lane, there may or210

may not be a vehicle (yellow), but while stopped behind the obstruction,211

the AV cannot detect it. The AV may Stop to let oncoming traffic go past212

or see if the obstruction resolves itself (e.g., starts moving again), Edge213

into the oncoming lane to gain better visibility without risking crashing,214

or Go and begin passing the obstruction through the oncoming lane.215

3.1. Domain Model216

The domain model describes the environment in which the agent operates and the dynamics of the agent’s actions217

within that environment. We model this as a stochastic shortest path (SSP) problem, a commonly used form of Markov218

decision process (MDP) for reasoning in fully-observable, stochastic environments where the objective is to find the219

least-cost path from a start state to a goal state [9]. For the purposes of this paper, we consider goal-oriented cost-220

minimizing problems as they align more naturally with the problem domains that are considered in our experiments.221

On the other hand, extending the theory to mixed-observable and partially-observable MDPs introduces additional222

sources of uncertainty, particularly with respect to human interaction, that are non-trivial to handle in our model. A223

discussion of these challenges can be found later in Section 7.3.224

Definition 1. A domain model,D, is an SSP represented by the tuple ⟨S , A,T,C, s0,G⟩ where:225

• S is a finite set of states,226

• A is a finite set of actions,227

• T : S × A → ∆|S | is a transition function where T (s, a) describes the probability distribution over successor228

states when taking an action a ∈ A in state s ∈ S ,229

• C : S × A→ R+ is a cost function where C(s, a) describes the cost of taking action a ∈ A in state s ∈ S ,230

• s0 ∈ S is the initial state, and231

• G ⊂ S is the finite set of goal states.232

A solution to an SSP is a mapping π : S → A, called a policy, that indicates that action π(s) is taken by the agent233

in state s. A policy π induces the state–value function Vπ : S → R234

Vπ(s) = C(s, π(s)) +
∑
s′∈S

T (s, π(s), s′)Vπ(s′) (1)

which represents the expected cumulative cost of reaching any sg ∈ G from state s ∈ S following the policy π. Any235

policy that minimizes this function is referred to as an optimal policy and denoted π∗; formally:236

π∗ := argmin
π∈Π

Vπ (2)

However, the existence of an optimal solution to the SSP is guaranteed only under the condition that there exists237

a proper policy, i.e. a policy under which a goal state is reachable from all states with probability 1, and that all238

improper policies generate infinite cost when starting from at least one state; under this assumption, the optimal value239

function is also unique.240
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Levels of Autonomy Human Involvement
l0 No Autonomy Human driver fully in control of vehicle.

l1 Verified Autonomy Autonomous agent in control of vehicle conditioned on explicit approval
from human for maneuver prior to execution.

l2 Supervised Autonomy Autonomous agent in control of vehicle conditioned on a human driver
supervising the system ready and capable of taking control.

l3 Unsupervised Autonomy Autonomous agent in unconditional control of vehicle, possibly with (but
not requiring) a human who can take over control.

Table 1: Levels of autonomy with L = {l0, l1, l2, l3} where l0 → l1 → l2 → l3.

3.2. Autonomy Model241

The autonomy model describes the levels of autonomy that the agent can operate in, restrictions on the situations242

under which each level is allowed, the utilities of each level, and a set of system sub-competencies.243

Definition 2. An autonomy model,A, is represented by the tuple ⟨L, κ, µ⟩ where:244

• L is the finite, partially ordered set of levels of autonomy where each level l ∈ L corresponds to some set of245

constraints on the system’s autonomy,246

• κ : S × L × A → P(L) is the autonomy profile where κ(s, l, a) returns the subset of levels of autonomy L ⊆ L247

allowed when performing action a ∈ A in state s ∈ S given that the agent just acted in level l ∈ L, and248

• µ : S × L × A × L → R+ is the cost of autonomy where µ(s, l, a, l′) describes the cost of taking action a ∈ A in249

level l′ ∈ L in state s ∈ S given that the agent just acted in level l ∈ L.250

While most interpretations of levels of autonomy, as discussed in Section 1, are presented as ordered sets of251

increasing autonomy, in general this need not be the case. In fact, in some cases different levels of autonomy may be252

directly compared. Hence, we choose to model ours more generally as a partially ordered set1 where li ≤ l j if and only253

if, given any task (s0,G), V li (s0) ≤ V l j (s0) where V li is the value function induced by the optimal policy when the level254

of autonomy is fixed at li. Note that we consider two levels, li and l j, to be adjacent if li < l j ∧ ∄lk ∈ L | li < lk < l j. The255

constraints corresponding to each level of autonomy can be technical in nature, i.e., internally imposed constraints256

such as requiring human supervision in poor weather conditions that may be known a priori to cause errors, as257

well as externally imposed constraints such as ethical or legal requirements. Each constraint is associated with a258

corresponding form of human assistance or involvement. Intuitively, the higher the level of autonomy, the lower the259

cost of human involvement, although this is not a requirement of the model. An example of a set of levels of autonomy260

can be seen in Table 1.261

Additionally, κ can be defined to not only reflect hard constraints such as ethical, legal, or technical constraints [40,262

55, 57, 88] that are fixed throughout the system’s deployment, but also tentative constraints that can be updated over263

time. Tentative constraints allow for a period of learning or adjustment early in the deployment of the system as264

the human familiarizes themselves with the system, or the system learns to act appropriately in its environment. An265

example of different constraints on autonomy can be seen in Table 2.266

The cost of autonomy, µ, is the cost associated with the act of operating in a given level of autonomy and is distinct267

from the base domain cost of the action’s execution. For example, in a level of autonomy that requires tele-operation268

from an off-site human to provide verification to a waiting autonomous vehicle, there may be an additional cost of269

operating in that level corresponding to the amount of time waiting to reach an available tele-operator and receive270

feedback. In a system with a finite energy supply that can perform sensing and perception at different levels of fidelity271

(corresponding to different levels of autonomy), each level may utilize a different amount of energy.272

1L could be structured as a polytree or an arbitrary directed acyclic graph, however, for the sake of clarity we do not consider such levels of
autonomy in this paper.
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Constraints on Autonomy
Ethical The AV may not be allowed to initiate a transfer of control to a human that is drowsy or otherwise deemed

unfit to operate the vehicle safely.

Legal The AV may not be allowed to operate autonomously inside of a school zone.

Technical The AV may be disallowed from operating autonomously in snowy weather due to the interference of per-
ception and object detection systems.

Tentative The AV may be initialized to drive in l1 when it has no visibility, but may learn to perform the action Edge in
l3 as it introduces an allowable level of risk by the human in the car.

Table 2: Examples of different types of constraints on autonomy.

3.3. Feedback Model273

The feedback model describes the agent’s knowledge about and predictions of its interactions with the human,274

including the types of feedback it can receive from the human, how likely each possible type of feedback is at any275

given time, and the expected cost to the human for assisting the agent.276

Definition 3. A feedback model, F , is represented by the tuple ⟨Σ, λ, ρ, τH ⟩, where:277

• Σ is the finite set of feedback signals that the agent can receive from the human,278

• λ : S × L × A × L → ∆|Σ| is the feedback profile where λ(s, l, a, l′) represents the probability distribution over279

feedback signals that the agent will receive when performing action a ∈ A in level l′ ∈ L in state s ∈ S given280

that the agent just operated in level l ∈ L,281

• ρ : S ×L×A×L → R+ is the human cost function where ρ(s, l, a, l′) represents the cost to the human when the282

agent performs action a ∈ A in level l′ ∈ L in state s ∈ S given that the agent just operated in level l ∈ L, and283

• τH : S × A → ∆|S | is the human state transition function where τH (s, a) represents the probability distribution284

over successors states s′ ∈ S when the human takes control of the system when the agent attempts to perform285

action a ∈ A in state s ∈ S .286

Although there are many forms of human feedback that have been studied, we limit our focus specifically to287

feedback signals which are represented as discrete tokens of feedback that the human can provide to the autonomous288

agent, either implicitly (e.g. facial gestures or body posture), or explicitly (e.g., verbal responses or physical control),289

as opposed to real-valued reward signals [50, 51] or full demonstrations [24, 70, 72]. The primary reason is to keep290

the feedback signals semantically simple in the sense that they are represented compactly by the system while still291

being easily and unambiguously associated with the human’s intentions. This reduces the overhead associated with292

the human-agent interactions. Each feedback signal may be associated with a distinct level, or subset of levels,293

of autonomy and a corresponding form of human involvement. An example of this can be seen in Table 3. Future294

directions of research may investigate extending these feedback signals to address such questions as how to learn from295

feedback when there is a degree of severity associated with it, how to handle proactive feedback which is intended by296

the human to be for inferred future states or trajectories, or feedback in the form of direct action commands.297

The human cost function, ρ, is the cost to the human when operating in a given level and hence is separate from the298

costs incurred directly by the autonomous agent. This cost may often be related to the human’s opportunity cost for299

being unable to engage in other activities while assisting the autonomous agent. However, it may additionally capture300

other costs to the human, such as additional stress or work added to them in addition to the time they spend assisting301

(assisting two different actions which take the same time may require different levels of exertion from the human,302

for example supervising an autonomous action making a left turn, or manually making the left turn). In practice, the303

human’s cost function may be non-Markovian; for instance becoming fatigued after repeatedly performing manual304

control, or becoming frustrated after extended periods of oscillating between different levels of autonomy, constantly305

shifting the demand on the human. While this can be coarsely approximated by conditioning the cost on the previous306
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Feedback Signal Interaction Levels of Autonomy
∅ No feedback N/A {l0, l2, l3}

⊕ Approval Verbal or Tactile Response {l1}

⊖ Disapproval Verbal or Tactile Response {l1}

⊘ Override Arrested Control {l2, l3}
Table 3: Each feedback signal is provided via a fixed and known interaction; for instance, the feedback signal approval may be
provided either by a verbal “Yes” from the human, or via a tactile response such as pressing a button on a touchscreen, similarly
for disapproval. Override may be recognized by any form of arrested control by the human during autonomous operation, for
instance braking, accelerating, or steering while the AV is in control. Each signal is only recognized when the AV is operating at
the corresponding level of autonomy.

level of autonomy (as done here), one can improve this by maintaining a model of the human’s state, similar to what307

is done by Costen et al. [26].308

If λ and τH are known exactly a priori then the system’s true competence (Definition 10) can be immediately309

computed exactly under any κ, and the problem reduces to a straightforward planning problem. Furthermore, in some310

problem instances where the feedback model is known exactly there may be no need to even constrain the policy311

space at all (i.e. κ(s, a) = L for every (s, a) ∈ S × A). This is the case when the feedback mechanisms are sufficient to312

prevent the agent from taking actions that would violate hard constraint; for example, if the human authority always313

overrides an action at a level that would violate an ethical, legal, or technical constraint. This introduces a trade-off in314

distributing the burden of effort between the designers of the system and the operator of the system to ensure safe and315

reliable operation in all cases.316

However, in this work we are primarily concerned with systems where λ and τH , and by consequence the system’s317

true competence, are unknown a priori. In this case, they must be estimated by functions λ̂ and τ̂H , which are based318

on observed data collected online through interactions with the human at various levels of autonomy that can generate319

feedback signals. These feedback signals can be analogously treated as labels in a labeled data set where the data is320

the state, action, and level that generated the feedback signal. In Section 5, we address situations where the human’s321

model of the world does not align with that of the autonomous agent, leading to feedback that is poorly discriminated322

by the agent, which reduces its ability to learn from the signals it receives from the human.323

Note that, in many real-world problems, the process of acquiring feedback signals may not be instantaneous, and324

in some cases could require a complex process of fully or partially transferring control to and from a human over325

an indefinite amount of time, where each element of the transfer process, such as the communication interface, is326

important. The problem of transfer of control in semi-autonomous systems has been separately studied [81, 99];327

however, for the sake of clarity, we do not model this process explicitly in this work as we focus on the orthogonal328

problem of modeling levels of autonomy and competence.329

3.4. Competence-Aware Systems330

A competence-aware system (CAS) represents a planning problem that accounts for the different levels of auton-331

omy available to the agent and factors in the agent’s expectations regarding the likelihood and cost of human feedback332

(e.g., assistance, queries, intervention, etc.). The objective of a solution to a CAS planning problem is to create a plan333

that best balances the cost of reaching the goal with the cost of human assistance to achieve the most cost-effective334

strategy given the constraints of the problem. Hence, the CAS uses the autonomy model to proactively generate plans335

that operate across multiple levels of autonomy by leveraging the feedback model to predict the likelihood of different336

feedback signals in order to optimize the level of autonomy and minimize the reliance on humans. To this end, we337

represent a CAS as a multi-objective planning problem.338

Example 2. A competence-aware system with four levels of autonomy—verified, supervised, unsupervised, and no339

autonomy—and four type of feedback signals—approval, disapproval, override, and no feedback. The policy, π,340

constrained by the autonomy profile κ, produces an action a at a level l to be performed in state s. The level l341

determines the execution process of the action a, as depicted in the lower section of the figure. Certain levels may342
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l0 No Autonomy
l1 Verified Autonomy
l2 Supervised Autonomy
l3 Unsupervised Autonomy
⊕ Approval
⊖ Disapproval
⊘ Override
∅ No Feedback
κ Autonomy Profile
λ Feedback Profile
τH Human Transition Function
GE Gated Exploration
−−→
AH Agent-to-Human Transfer of Control
−−→
HA Human-to-Agent Transfer of Control

Figure 3: Illustration of Example 2

prompt the human for feedback, with a possibility of complete transfer of control from the autonomous agent to the343

human. After the action is executed and data is collected, internal model parameters, λ and τH , are updated. Finally,344

the agent may perform gated exploration (Definition 8) to update the autonomy profile κ, although in practice this345

would be performed on a less frequent basis.346

Definition 4. A competence-aware system S is represented by the tuple ⟨S , A,T ,C, s0,G⟩, where:347

• S = S × L is a set of factored states, each comprised of a domain state s ∈ S and a level of autonomy l ∈ L.348

• A = A × L is a set of factored actions, each comprised of a domain action a ∈A and a level of autonomy l ∈ L.349

• T : S × A → ∆|S | is a transition function where T (s, a) represents the distribution over successor states when350

taking action a ∈ A in state s ∈ S .351

• C =
[
C µ ρ

]T
is a vector of cost functions.352

• s0 ∈ S is the initial state where s0 = ⟨s0, l⟩ for some l ∈ L.353

• G ⊂ S is the set of goal states.354

A CAS state s ∈ S represents the CAS’s current domain state s and the level of autonomy, l, that the CAS355

performed its last action in. The purpose of including the previous level of autonomy in the state representation is to356

capture the fact that human feedback can vary depending on the level of autonomy that the agent was just operating357

in (for instance, a human may be less likely to override the system if they were previously engaged in supervising358

the system); additionally, we may want to discourage the system from oscillating between levels of autonomy by359

imposing a small cost every time the system changes levels. Note that, one can set G = Ŝ × L for some Ŝ ⊆ S to360

indicate that the level of autonomy does not impact the goal condition or state, for instance setting G = G × L.361

A CAS action a ∈ A represents a domain action a to be performed at a given level of autonomy l which may alter362

both the mechanics of how the action is executed, the form and degree of involvement by the human authority in the363

execution of the action, and the types of feedback that the agent can receive from the human authority.364

T is a transition function that represents the probability distribution over both how the state will change and which365

feedback signal, if any, the agent will receive from the human when performing an action conditioned on the level366

the action is being performed in, the current state, and the previous level that the agent had operated in (i.e. the367

timestep prior to the current one). For example, the likelihood of a human override may decrease if the system had368
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already been acting under supervision than if they had been acting without supervision, as the human may have a369

better understanding of what the system is doing.370

Example 3. Given L and Σ, we can specify the state transition function of this CAS. Given s = (s, l), s′ = (s′, l′),371

and a = (a, l′), we define T as follows:372

T (s, a, s′) =


τH (s, a, s′), if l = l0,
λ(⊕|s, a)T (s, (a, l2), s′) + λ(⊖|s, a)[s = s′], if l = l1,
λ(∅|s, a)T (s, a, s′) + λ(⊘|s, a)τH (s, a, s′), if l ∈ {l2, l3},

(3)

where [·] denotes Iverson brackets. Intuitively, Equation 3 states that when the agent operates in l0, it follows the373

transition dynamics of the human who takes control. When operating in l1, the probability it arrives in state s′ is374

the probability it is approved to take the action times the probability of the state change following T under level l2,375

plus the probability that it is disapproved and the state is the same. In levels l2 and l3, the probability it arrives in376

state s′ is the probability it succeeds following T without any human intervention plus the probability that the human377

overrides it and takes it to that state. In general, we expect the probability of an override to be lower (or even 0) in l3378

as supervision is not required.379

Figure 4: Illustration of a policy space,
Π, constrained by three different auton-
omy profiles, κ1, κ2, and κ3.

A solution to a given CAS is a policy π that maps states and levels s ∈ S380

to actions and levels a ∈ A. Multi-objective decision making has been well-381

studied [73], and for our purposes we assume a scalarized approach [73] with382

a scalarization function f parameterized by a weight vector w. A common383

approach is simply based on a linear combination of the cost functions in C,384

e.g., C = w
[
C µ ρ

]T
. With some modifications, the problem could be385

extended to handle both lexicographic models [100] and constrained mod-386

els [2]. However, the properties that we derive for the scalarized model may387

not necessarily hold for arbitrary multi-objective models, and would need388

to be re-examined in those contexts. Additionally, we restrict the CAS to389

only consider policies that are allowed under the autonomy profile κ in the390

following way.391

Definition 5. Let a = ⟨a, l⟩. Given s = ⟨s, l′⟩ ∈ S , we say that (s, a) is392

allowed if l ∈ κ(s, a), and a policy π is allowed if for every s ∈ S , (s, π(s)) is393

allowed.394

We denote the set of allowable policies given κ as Πκ and require that the policy returned by solving the CAS,395

π∗, is always taken from argminπ∈Πκ Vπ(s0). An illustration of how different autonomy profiles can constrain the full396

policy space, Π, can be seen in Figure 4.397

In general, a competence-aware system planning model is not guaranteed to be a valid stochastic shortest path398

problem (see Proposition 1) due to the possible effects that κ and λ can have on the existence of a proper policy,399

although in some cases they may only induce dead-ends away from the initial state for which there is existing work400

on how to handle [52]. However, one can ensure that there is a proper policy with the inclusion of a level of autonomy401

with a property similar to level l0 in Table 1 which allows for (at potentially high cost) the deterministic completion402

of any action or task, guaranteeing the existence of a proper policy. Note that we do not need to worry about the403

possibility of ρ or µ inducing zero-cost cycles as they are non-negative cost functions, and the domain model is, by404

assumption, a valid SSP.405

4. Properties of a Competence-Aware System406

In this section, we will discuss the central properties of a CAS that will allow us to prove several key results of407

competence-aware systems. Henceforth, we will assume that there exists a singular human authority that the semi-408

autonomous system in a CAS interacts with, and we will use the notationH to refer to them.409
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Definition 6. The human authority,H is represented by the tuple ⟨FH , λH , κH⟩ where:410

• FH is the set of features used byH when providing feedback,411

• λH : S × A→ ∆|Σ| is a stationary distribution of feedback signals thatH follows, and412

• κH : S × A → P(L) is the fixed mapping from state-action pairs to sets of autonomy levels that H will allow413

the autonomous agent to operate in with nonzero probability.414

Intuitively, κH represents the human authority’s belief of the agent’s competence; by definition any level not415

contained in the image of κH will never be allowed byH .416

First, we begin with a simple proof that a CAS model is, in general, not guaranteed to be a valid stochastic shortest417

path problem due to the lack of a proper policy.418

Proposition 1. There exists a competence-aware system S that does not admit a proper policy.419

Proof. Let S be a CAS with exactly one level of autonomy, l, where the level of autonomy works as follows: when420

the agent attempts to execute action a, they must first query the human to obtain a binary yes or no feedback signal.421

If the signal is yes then the agent may attempt to execute the action according to its model. If the signal is no then422

the agent may not attempt to execute the action in its current state. Let (s0, l) ∈ S denote the initial state and assume423

(s0, l) < G, where S is the state space of S and G is the set of goals. Let λH (yes|(s0, l), (a, l)) = 0.0 for every action424

a ∈ A (where A is the action set). As the agent will never be able to transition out of its state which is not a goal state425

by assumption, it is clear that there exists no proper policy.426

Second, a fundamental component of the CAS model is the ability to adjust its autonomy profile over time using427

what it has learned in order to optimize its autonomy by reducing unnecessary reliance on human assistance. However,428

before operating in a new level of autonomy, the system may have no knowledge of how the human will interact with429

it in that level, i.e., the feedback profile in that new level may be initialized by default to some baseline distribution.430

As a result it is necessary that the system explore levels of autonomy that it predicts are more cost effective than its431

current allowed levels, so that it may learn whether or not it is competent to act in those levels.432

Allowing the system to alter its own autonomy profile, however, can lead to severe consequences in the real world433

if not done carefully, mitigating the risk-awareness we aim to endow via the competence modeling. Therefore, we434

propose two notions to ensure a measure of safety and risk-sensitivity in a competence-aware system. The first is435

level-safety which is a notion of the safety of the level of autonomy that the system is using and is conditioned on436

both the agent and the human; intuitively, a CAS is level-safe if it cannot act in levels that the human authority437

would not allow. Second is gated exploration which is a simply extension to standard exploration methods used in438

reinforcement learning in which the system must obtain permission from a human before exploring a new (disallowed)439

level of autonomy, ensuring that level-safety is never violated.440

Example 4. An autonomous vehicle is initialized to only use levels {l0, l1, l2} when executing the overtaking maneuver,441

but learns that there is a very low likelihood of an override by the human authority during the day with clear visibility442

and sparse traffic. Hence, it expects based on estimated costs that its competence is in fact l3 which is initially443

disallowed to ensure safety at initial deployment. It therefore queries the human to approve it to update its autonomy444

profile κ by adding level l3 under the stated conditions.445

Definition 7. A CAS S is level-safe under κ if κ(s, a) ⊆ κH (s, a) for every (s, a) ∈ S × A.446

Definition 8. We define the gated-exploration strategy for (s, a) ∈ S × A as follows: let adj(l, l′) = 1 if l = l′ or l and447

l′ are adjacent in L and 0 otherwise, and let adj(κ(s, a), l′) = 1 if l′ ∈ κ(s, a) or adj(l, l′) == 1 for some l ∈ κ(s, a).448

Let Pl(L) be a distribution over L such that Pl(l′) = 0 if ad j(l, l′) == 0, and let l∗ ∼ Pl(L). If l∗ ∈ κ(s, a) do nothing,449

otherwise, query the human authority H to allow for the level exploration. If the query returns a positive response,450

set κ(s, a)← κ(s, a) ∪ {l∗}, and otherwise do nothing.451

Proposition 2. Let S be a CAS with initial autonomy profile κ0. If S is level-safe under κ0 and follows the gated-452

exploration strategy, then S will be level-safe under κt for any t ≥ 0.453
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Proof. This is straightforward to observe by applications of the definitions. If S is level-safe under κ0, then for all454

(s, a) ∈ S ×A, κ0(s, a) ⊆ κH (s, a) by definition. If there exists t > 0 for which κt(s, a) , κ0(s, a) for some (s, a) ∈ S ×A,455

then there is some l∗ ∈ κt(s, a) \ κ0(s, a). By the definition of gated exploration and κH , it must be that l∗ ∈ κH (s, a),456

and hence κt(s, a) ⊆ κH (s, a). As (s, a) is arbitrary, this holds for all (s, a) ∈ S × A, and hence S is level-safe.457

Next, we introduce a notion of feedback consistency which is a property of how consistent the human authority is458

in providing the same feedback given the same query by the acting agent.459

Definition 9. Let FH = {FH1 , ..., F
H
n } be the set of features used by the human authority,H , and let SH = FH1 × · · · ×460

FHn × L. The ground truth feedback function is a deterministic mapping f : SH × A→ Σ. H is perfectly consistent461

if λH ( f (s, a)|s, a) = 1 ∀s ∈ S , a ∈ A. If λH ( f (s, a)|s, a) ≥ ϵ for ϵ ∈ (0, 1) ∀s ∈ S , a ∈ A, thenH is ϵ-consistent.462

Unless otherwise stated, we assume that the human authority is ϵ–consistent henceforth. We now define three463

central properties of a CAS.464

Definition 10. Let λH be the stationary distribution of feedback signals that the human authority follows. The com-465

petence of CAS S, denoted χS, is a mapping from S × A to the optimal (least-cost) level of autonomy given perfect466

knowledge of λH . Formally:467

χS(s, a) = argmin
l∈L

q∗(s, (a, l); λH ) (4)

where q∗(s, (a, l); λH ) is the cumulative expected cost under the optimal policy π∗ when taking action a = (a, l) in state468

s conditioned on the human authority’s feedback distribution, λH .469

Fundamentally, the system’s competence for executing action a in state s, χS(s, a), is the most beneficial (e.g. cost470

effective) level of autonomy were it to know the true human feedback distribution. When L is an ordered set, we471

expect this to generally be the highest level of autonomy allowed by the human; however, this need not be the case. In472

principle, the highest allowed level of autonomy could require more frequent human interventions, e.g. due to lower473

levels of trust by the human in the system [44], that may render it less efficient overall relative to a lower level of474

autonomy.475

It is important to note that this definition of competence relies on λH , and hence is a definition of competence on476

the overall human-agent system, and is explicitly not just a measure of the underlying agent’s technical capabilities477

(i.e. D). A corollary of this fact is that the CAS is only as competent as the human authority believes it to be; a human478

authority that has a poor understanding of the system’s abilities could lead to the system having a lower competence479

than a human authority that knows perfectly the limitations and capabilities of the system. One reason for modeling480

competence in this manner is to avoid relying on arbitrary thresholding based on evaluative metrics to determine when481

a system is competent or not.482

We say that a CAS S is λ-stationary if, in expectation, any new feedback drawn from the true distribution λH will483

not affect λ enough to change the optimal level of autonomy for any s ∈ S and a ∈ A. We show below that, under484

standard assumptions, S will converge to λ-stationarity.485

Definition 11. Let S be a CAS and let U(λ) be the q-value of (s, a) under the optimal policy given λ where S executed486

the action a in level l in state s. We define the expected value of sample information (EVSI) on σ ∈ Σ for (s, a) to be:487 ∑
σ∈Σ

max
l∈L

∫
Λ

U(l, λ)λ(σ|s, a, l)p(λ)dλ −max
l∈L

∫
Λ

U(l, λ)p(λ)dλ. (5)

Definition 12. Let S be a CAS. S is λ-stationary if for every state s = (s, l) ∈ S , and every action a ∈ A, the expected488

value of sample information on σ ∈ Σ for (s, a) (Eq. 5) is less than ϵ for any ϵ greater than 0.489

Proposition 3. Let λs,a
t be the random variable representing λ(s, a) after having received t feedback signals for (s, a)490

where each signal is sampled from the true distribution λH (s, a). Then, as t → ∞, the sequence {λs,a
t } converges in491

distribution to λs,a
H
= E[λH (s, a)].492

Proof. As each signal is drawn from λH (s, a) i.i.d, then by a straightforward application of the law of large numbers493

the sequence will converge in probability to λs,a
H

, which directly implies the claim.494
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Theorem 1. Let S be a CAS, and let λs,a
t be the random variable representing λ(s, a) after having received t feedback495

signals for (s, a) where each signal is sampled from the true distribution λH (s, a). As t → ∞, if no (s, a) is starved, S496

will converge to λ-stationarity.497

Proof. Let s ∈ S and a ∈ A. As s and a are arbitrary and we assume that no (s, a) is starved, it is sufficient to show
convergence to stationarity for (s, a) as t → ∞. By Proposition 3, {λs,a

t } will converge to λs,a
H

in distribution given our
assumptions. Because {λs,a

t } converges in distribution, limt→∞ Pr(|λs,a
t − λ

s,a
H
| > ϵ) = 0 ∀ϵ > 0. Therefore, in the limit

the probability that λ = λs,a
H

after t steps, pt(λ), defines a Dirac delta function with point mass centered at λH . Hence
we get that, limt→∞ EVSI (Eq. 5)

=
(

lim
t→∞

∑
σ∈Σ

max
l∈L

∫
Λ

U(λ, l)λ(σ|s, ∅, a, l)pt(λ)dλ
)
−
(

lim
t→∞

max
l∈L

∫
Λ

U(λ, l)pt(λ)dλ
)

=
(∑
σ∈σ

max
l∈L

U(λH , l)λH (σ|s, ∅, a, l)
)
−
(

max
l∈L

U(λH , l)
)

=
∑
σ∈Σ

max
l∈L

U(λH , l)(1 − λH (σ|s, ∅, a, l))

= max
l∈L

U(λH , l)
(
1 −
∑
σ∈Σ

λH (σ|s, ∅, a, l)
)

= max
l∈L

U(λH , l)(1 − 1)

= 0.
498

Second, we say that a CAS S is level-optimal in some state if, under its current optimal policy, the action it takes499

in that state is performed at its competence for that state-action pair.500

Definition 13. Let S be a CAS. S is level-optimal in state s if501

π∗(s) = (a, χS(s, a)) (6)

If this holds for all states we say that S is level-optimal. Similarly, S is γ-level-optimal if this holds in γ|S | states for502

γ ∈ (0, 1).503

The primary goal of a competence-aware system is to reach level-optimality while maintaining level-safety. As504

we have already shown that a CAS will maintain level-safety under the gated-exploration strategy (given an initial,505

level-safe autonomy profile), we therefore want to show that under certain conditions, a competence-aware system S506

will be guaranteed to reach level-optimality. In other words, that the system is guaranteed to reach a point where it507

operates at its competence in all situations.508

To prove that a competence-aware system will reach level-optimality, we rely on the notion of gated exploration as509

detailed in Definition 8. However, we also require the following exploitation approach: if S has reached λ-stationarity510

then it no longer explores under the exploration strategy and instead exploits its knowledge by deterministically511

selecting the optimal level of autonomy at that point, i.e. for any given (s, a) ∈ S × A, the system will use a level512

l ∈ argminl∈κ(s,a) q(s, (a, l); λ̂). However, as the theory only proves convergence to λ-stationarity (that is, an expected513

value of sample information of 0 over all σ ∈ Σ for every (s, a) ∈ S × A) in the limit, we instead simply require514

that for any fixed z ∈ R+, sufficiently small, the system will switch to exploitation once the expected value of sample515

information falls below z everywhere which will happen in finite time. We will refer to this below as exploitation516

under stationarity.517

Definition 14. Let S be a CAS, and let κt represent the autonomy profile κ at time t. Given s ∈ S and a ∈ A, we say518

that l ∈ L is reachable from κt for (s, a) if there exists at least one path from κt(s, a) to l ∈ L, where all levels along519

the path are in κH (s, a).520

In the following text, let κt refer to the autonomy profile, κ, after the tth feedback signal has been received.521
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Human 1 Human 2
F̂ σ1 σ2 σ3 σ1 σ2 σ3

f1 0.171 -0.146 -0.055 0.222 0.255 -0.410
f2 0.293 -0.158 -0.209 -0.037 -0.109 0.111
f3 -0.399 0.267 0.220 -0.212 -0.197 0.361
f4 0.375 -0.335 -0.103 0.384 -0.170 -0.313
f5 -0.379 0.257 0.205 -0.372 0.311 0.208
f6 0.064 0.043 -0.141 0.045 -0.183 0.069
f7 -0.030 0.118 -0.104 0.044 -0.019 -0.036
f8 0.179 -0.110 -0.112 0.044 -0.019 -0.036
f9 0.085 -0.093 -0.002 -0.062 0.027 0.051
f10 0.108 -0.151 0.038 -0.237 0.104 0.193
f11 0.175 -0.059 -0.168 0.325 0.295 -0.549

Table 5: The correlation matrices of each override signal with each feature.

Theorem 2. Let S be a CAS that follows the gated exploration strategy and performs exploitation under stationarity,522

where χS(s, a) is reachable from κ0 for all (s, a) ∈ S × A. Then if no (s, a) is starved, as t → ∞, S will converge to523

level-optimality.524

Proof. Fix s ∈ S and threshold z ≪ 1 ∈ R+. We need to show that in the limit, π∗(s) = (a, χS(s, a)). By Proposition 1,525

S will converge to λ-stationarity for (s, a) for all a ∈ A. Hence there is a finite point t at which the expected value of526

information on Σ falls below z for (s, a) for every a ∈ A and S will exploit under stationarity for s. That is, at such527

time, π∗(s) = (a, argminl∈κt(s,a)(q
∗(s, (a, l)). By Proposition 3, this value is exactly the definition of χS(s, a) provided528

that χS(s, a) ∈ κt(s, a). By assumption, χS(s, a) is reachable from κ0(s, a) ⊆ κH (s, a), so given that under the gated529

exploration strategy, there is a nonzero probability of reaching χS(s, a), and as s is arbitrary, we are done.530

5. Improving Competence Online531

As discussed in Section 1, many problems in the open world are too complex to fully specify a priori all features532

that will be relevant over the course of the system’s deployment, even with expert knowledge of the domain. This is533

particularly prevalent with features that may not directly impact the technical functionality of the autonomous agent534

(e.g. its domain model) but rather are factors that influence the human’s feedback which may encompass additional535

features that affect other elements such as comfort or social behavior [8, 58]. Preliminary analysis of override data536

collected on a real autonomous vehicle prototype from two different safety drivers corroborates this claim. Here,537

the AV could either be in supervised autonomy, or could defer full control to the human; overrides corresponded to538

braking or accelerating registered by the human driver while the AV was operating in supervised autonomy.539

The results of this analysis can be seen in Table 5 where we provide the correlation matrix for each type of540

override with every feature used by the CAS model implemented on the AV for each human safety driver. These541

results demonstrate two important facts. First, the difference in correlation matrices between Human 1 and Human542

2 illustrate that feedback, and the features which determine that feedback, can vary significantly between humans,543

meaning there is no “one-size-fits-all” feedback model. Second, the lack of any feature having a correlation coefficient544

greater that ±0.4 indicates that it is challenging, even with expert input, to capture all of the causal features used by545

all humans a priori. If the CAS model does not represent certain features in its model that are used by the human in546

deciding their feedback signals (either explicitly or implicitly), the human’s feedback may appear inconsistent or even547

random, leading to low competence and a potentially high degree of improper reliance on the human stemming from548

an underspecified model. Consequently, for these systems to be most effective in the real world it is important that549

they are equipped with a means of updating their model online to better align with the human’s model so that they can550

better predict the correct feedback likelihoods.551

To address this shortcoming, we propose a method for providing a CAS the ability to improve its competence over552

time by increasing the granularity of its state representation through online model updates. The approach works by553
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identifying states that are deemed indiscriminate under the system’s current feedback profile, i.e. unable to predict554

human feedback with high confidence, and attempts to find the feature, or set of features, that is available to the system555

but currently unused that best discriminates human feedback, leading to a more nuanced drawing of the boundaries556

between regions of the state space with different levels of competence. An example of this process can be viewed557

in Figure 6. By exploiting the existing information available in a standard CAS model (namely, the existing human558

feedback) to identify where features may be missing and should be added, our approach adds no additional work to the559

human at all. Additionally, when the missing features impact only the human’s feedback profile (and not the system’s560

technical capabilities), or when using a CAS with levels of autonomy that involve forms of human assistance that main-561

tain safe operation (like that which is described in the running example) we only need to modify the state space directly,562

and not the transition or cost functions, enabling the entire process to be performed online and fully autonomously.563

Figure 5: Illustration of Example 5

564

Example 5. Recall the scenario in our running example, where the AV565

(blue) must overtake an obstacle blocking its lane (red) by driving into566

the oncoming traffic’s lane (yellow). Now, consider the existence of a567

trailing vehicle (or vehicles) waiting behind the AV (green); the existence568

of trailing vehicles may not be included in the state representation of the569

domain model as they do not affect the decision making of the AV from a570

technical perspective (that is, they do not influence the success or failure571

probabilities of each action, do not influence the safety of the actions,572

and short of rear-ending the AV do not directly alter the AV’s state), and573

serve only to increase the state space of the planner. However, it may574

be the case that the human in the AV is actually more likely to override575

safe behavior, such as waiting if there is an oncoming vehicle, and take576

manual control of the vehicle due to the social pressure exerted by the577

trailing vehicle’s existence.578

5.1. Indiscriminate States579

Let S be a competence-aware system. In practice, when a robotic system is deployed into the open world, both580

the exact environment the system will operate in, and the human authority it will interact with, may not be known581

a priori. Naively including all possible features available to the system from perception or external sources in its582

planning model may make planning intractable without benefit in the case where many of the features do not add583

useful information for decision making and serve only to increase the number of states. Hence, we assume that S has584

available to it a complete feature space that can be partitioned into an active feature space that is used by S and an585

inactive feature space that is not yet used by S in its planning model. However, as S receives additional feedback over586

time, S will learn to exploit some of the inactive features, adding them to its state representation to more effectively587

align its features with those used by the human authority.588

Definition 15. Given the complete feature space F = {F1, F2, ..., Fn} available to S, the active feature space is589

denoted as F̂ ⊆ F, and the inactive feature space as F̆ = F \ F̂.590

We say that a state s ∈ S is indiscriminate if, intuitively, the active feature space is missing features needed591

to properly discriminate the feedback received from the human for the state s. The condition states more precisely592

that for at least one action there must be no feedback signal that, under the system’s current feedback profile, can593

be predicted with high probability. The intuition is that, under the assumption of ϵ-consistency and a ground truth594

feedback, situations where the agent cannot predict feedback with high probability indicate that a feature may be595

missing from its state representation causing the probability mass to be normalized over the remaining features in its596

active feature space. We formalize this below.597

Definition 16. Let the human authorityH be ϵ-consistent for ϵ > 1
|Σ|

. A state s ∈ S is indiscriminate if there exists at598

least one action, a ∈ A, where for every feedback signal σ ∈ Σ, we have the following:599

λ(σ | s, a) ≤ 1 − δ δ ∈ (1 − ϵ, 1 −
1
|Σ|

) (7)
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Figure 6: An illustration of iterative state space refinement. S (F̂i) represents the state space given the active feature set F̂i. The
middle row depicts a “zoomed in” view of a small part of the state space. We can see that originally, with active feature set F̂1, there
are only two states in the subspace: s1 and s2. The top row depicts the key information found by our algorithm: first, it identifies
that s2 is an indiscriminate state given λ, and finds the discriminator D1 (represented by the red line) which then partitions s2 into
two states: s21 and s22. The process repeats once more, finding that s1 is also an indiscriminate state, and finding discriminator D2

which partitions s1 into four states: s11, s12, s13, and s14.

Here, δ is referred to as the discrimination slack, and determines the predictive confidence needed for a state to be600

declared indiscriminate; the lower the slack is set, the higher the confidence needed. The discrimination slack serves601

to provide a formal trade-offmechanism between increasing the complexity of the underlying planning model, and the602

completeness of the competence-aware model. The determination of how to set δ may be done via expert knowledge,603

offline evaluations, or could even be tuned online in a dynamic fashion. To avoid considering states that have a very604

small amount of data (and hence may be deemed “indiscriminate” due to chance), we consider only states for which605

the system has collected a sufficient amount of data (which may be determined simply via a fixed threshold, or based606

on some statistical analysis).607

Given the notion of an indiscriminate state, we can now define the central concept of this approach. A discrimi-608

nator is, intuitively, any subset of the inactive feature space that could help the agent to better discriminate feedback609

from H for an indiscriminate state. For example, consider the autonomous vehicle agent in Running Example 5 that610

initially does not consider the existing of a trailing vehicle in its active feature set. Suppose that the human always611

overrides the vehicle and takes manual control when there is a trailing vehicle if the AV waits for too long before612

proceeding around the obstruction to maintain safe operation. Without this additional feature in its model, the agent613

may perceive having received “noisy”, or even seemingly random, feedback from the human authority, leading to a614

feedback profile with low predictive capabilities and a poor competence model, resulting in the AV conservatively615

transferring control to the human when performing an overtake in situations where it was actually competent to act616

autonomously. By providing the agent with the ability to add these features to its active feature space, the agent’s new617

feedback profile will be able to predict the correct feedback signal in more situations with higher probability.618

5.2. Iterative State Space Refinement619

Definition 17. A discriminator is any subset of F̆ which, if added to F̂, will improve the performance of λ by at least620

α, for some α ∈ (0, 1).621

The larger that α is set, the stricter the requirement is on including a new feature. Determining α can be as622

simple as setting it to be a fixed threshold, or can be via more sophisticated means such as based on the value of623

information or other information-theoretic metrics. The methodology for selecting discriminators is well explored624

in the feature selection literature and not the focus of this contribution; standard approaches include mRMR [65],625

JMI [17], and correlation-based methods [82]. We define a discriminator as a subset because there may be causal626

features which if added individually do not help to discriminate the human’s feedback, but when added together do627

(i.e. they are only meaningful in the context of each other). The size of feature subsets to consider when selecting628

potential discriminators is therefore an important parameter of the approach, but we note that, if desired, one could629

also take an iterative approach, running the algorithm with increasing size until a discriminator is found.630
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Algorithm 1: Single–Step State Space Refinement
Input: A CAS S, datasetD, slack δ, and threshold M
Result: An updated CAS S

1 S
∗
← {}

2 for s ∈ S.GetStates() do
3 for a ∈ S.GetActions() do
4 if maxσ∈Σ λ(σ|s, a) ≤ 1 − δ and
5 maxσ∈Σ Pr[Obs(D(s, a))|σ is ground truth] < pϵ
6 S

∗
← S

∗
∪ {s}

7 end
8 end
9 end

10 if S
∗
= ∅

11 return S
12 end

13 s∗ ∼ S
∗

14 Dtrain,Dval ← Split(D)
15 D← FindDiscriminators(Dtrain, F̆, s)
16 for d ∈ D do
17 λd ← train(F̂1 × · · · × F̂|F̂| × d,Dtrain)
18 end

19 d∗ = argmaxd∈D Evaluate(λd,Dval)
20 if Validate(d∗,S) is True
21 F̂ ← F̂ ∪ d∗

22 S′ ← Update(S)
23 end

24 return S′

Algorithm 1 presents the pseudocode of631

our approach for improving the competence632

of a CAS via iterative partitioning of the633

state space by adding new features to the634

state representation over time. The algorithm635

first identifies the current set of indiscriminate636

states (Lines 1–9). To avoid labeling sparsely637

sampled state-action pairs as indiscriminate638

through chance, we limit the process to only639

consider certain state-action pairs. In particu-640

lar, only those where the probability of having641

observed all labeled instances of that element642

in the existing dataset D, referred to in Algo-643

rithm 1 as Obs(D(s, a)), is at least some thresh-644

old pϵ conditioned on the assumption that there645

exists a true correct feedback signal returned646

with probability at least ϵ by the human for647

every state-action pair (Line 5). Next, the al-648

gorithm samples an indiscriminate state from649

the set (Line 13) and identifies the most likely650

discriminators for that state using any stan-651

dard feature selection technique (in our case,652

we used mRMR [65] with the FCQ methodol-653

ogy [102]) (Line 15). For each potential dis-654

criminator, a new feedback profile is trained655

using a portion of the full dataset with the dis-656

criminator temporarily added to the active fea-657

ture set (Lines 16–18). The discriminator that658

leads to the best performing feedback profile,659

in our case the highest Matthews correlation660

coefficient, is selected for validation (Line 19).661

If validation is successful, the discriminator is662

added to the active feature set and the system is updated (Lines 20–23).663

In the design and usage of Algorithm 1, we make two key assumptions. First, we assume that the initial transition664

function provided in the domain model is sufficiently correct for any scenario where the agent is allowed, under κH ,665

to act autonomously. We aim to improve the robustness of deployed systems where accounting for every scenario a666

priori is infeasible, but where the scenarios that are considered a priori are well-designed.667

Second, we assume that the human authority has a sufficient understanding of the agent’s capabilities to both668

prevent the execution of an action that the agent cannot perform successfully and also provide consistent feedback.669

We make this assumption for two reasons. First, there are different ways to improve the human authority’s under-670

standing of the system’s capabilities so that it has the appropriate trust [45], or reliance, on the system. These include671

pre-deployment training, standardized feedback criteria, and expert knowledge of the system. Second, recognizing672

potential failures and handling fault recovery are separate areas of active research [7, 27, 94] that are orthogonal to673

what we examine here.674

Critically, under these assumptions, we do not need to update the domain model’s transition or reward functions675

directly at any point. It suffices for the agent to be able to discriminate between actions that it has the competence to676

perform autonomously and actions that require human involvement because, under the first assumption, T is correct677

when the agent is allowed to execute an action autonomously. Consequently, the only elements of the CAS transition678

function, T , that are marginally dependent on features added to the state representation are λ and τH . As λ and τH679

are learned online from observed feedback, we can directly compute the respective new distributions over F̂′ from680

the current dataset which in turn updates the transition function as λ and τH are both parameters of T . We suggest681

that when one or both of these assumptions do not hold it is possible to use our approach as a means of identifying682
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the missing features and subsequently improving the system’s competence by directly updating the transition and cost683

functions (e.g. via software updates).684

A natural question is whether in the process of adding a discriminator to make some indiscriminate states discrim-685

inate, we will, as an unintended by-product, make some discriminate state indiscriminate.686

Remark 1. Adding a discriminator will never cause a discriminate state to become indiscriminate.687

While possibly not obvious a priori, this remark is trivially true. Observe that any given discriminate state will688

either be affected by the discriminator or it will not. If it is not affected, the feedback profile for the state will not689

change. If the state is affected, then the initial state in question by definition no longer exists. More importantly, we690

want to ensure that every state is eventually properly discriminated given a sufficient set of features.691

The following proposition states that if every feature that the human uses to determine their feedback is available692

to the robot, then there must be a point in time at which the robot has fully discriminated all states, and no state will693

become indiscriminate past that point.694

Proposition 4. Let It be the number of indiscriminate states at time t, and let λs,a
t be the random variable representing695

λ(s, a) after having received t feedback signals for (s, a) where each signal is sampled from the true distribution696

λH (s, a). If FH ⊆ F,H is ϵ-consistent, δ > 0 and no (s, a) ∈ S × A is starved, then there exists some t∗ > 0 for which697

It′ = 0 for all t′ > t∗.698

Proof. First, observe that as FH ⊆ F, if there is a point at which FH ⊆ F̂, then because the sequence {λs,a
t } converges699

in distribution by Proposition 3, limt→∞ Pr(|λs,a
t −λ

s,a
H
| > γ) = 0 ∀γ > 0, (s, a) ∈ A×A. Hence, there exists some t∗ > 0700

for which Pr(|λs,a
t − λ

s,a
H
| > δ) = 0 at which point it is clear that no state will be indiscriminate under δ. Consequently,701

for the claim to not hold, it must be the case that for every t > 0, FH \ (FH ∩ F̂) , ∅. Pick such a t, sufficiently large,702

for which there is an indiscriminate state s ∈ S . There is some subset, G ⊆ FH \ (FH ∩ F̂), which is a discriminator703

of s. As this holds for all t > 0 and s ∈ S , we either reach a satisficing t∗ where FH \ (FH ∩ F̂) , ∅, and hence are704

done, or where FH ⊆ F̂ which contradicts our assumption.705

6. Empirical Evaluations706

To test the competence-aware system, we implemented the CAS model in two simulated autonomous vehicle707

domains at different levels of decision-making abstraction. The first domain is a high-level navigation problem in708

which an autonomous vehicle must plan (and execute) the optimal route to take between two locations conditioned709

on its knowledge about different intersections and streets and its own competence in performing different maneuvers710

at the various locations. The second takes a more fine-grained look at one of the maneuvers that can be performed711

in the first domain, namely passing an obstacle that is blocking its lane, and is modeled after the domain depicted in712

Example 1.713

We evaluated our iterative state space refinement approach (Algorithm 1) on both of these domains as well, where714

the key difference is that the CAS model is missing features in its initial active feature space that do not impact its715

transition model (that is, what it is technically capable of doing), but impact the human’s feedback signal likelihoods716

regardless. We test our approach for multiple different simulated humans, each of whom uses different auxiliary717

features in determining their feedback. We describe an overview of the domains below, and include additional exper-718

imental details in Appendix A.719

6.1. Autonomous Vehicle Navigation720

6.1.1. Domain Description721

In this domain, an autonomous vehicle operates in a known map represented by a directed graph G = (V, E) where722

each vertex v ∈ V represents an intersection and each edge e ∈ E represents a road; the graph used can be seen in723

Figure 7 and is modeled after locations in the area of Amherst, Massachusetts. The autonomous vehicle is tasked with724

navigating the map safely from a start vertex to a goal vertex.725

Each vertex (intersection) state is represented by an ID for the vertex, a boolean indicator of the presence of726

pedestrians, a boolean indicator of the presence of an occlusion limiting or blocking visibility, the number of other727
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Figure 7: A depiction of the map used for our simulated navigation domain with actual locations from OpenStreetMap (left) and
the abstracted representation of the navigation graph (right).

vehicles at the intersection (0-4), and the vehicle’s heading. Each edge (road) state is represented by a start vertex728

ID, a destination vertex ID, the number of drivable lanes on the current road segment, the direction of travel, and a729

boolean indicator of the presence of an obstruction blocking the agent’s lane. Additionally, each edge is associated730

with a known length and speed of travel. Model parameters dictating the probabilities of each state variable (e.g. the731

probability of a pedestrian being at a given intersection upon reaching it) are assumed to be known offline and given732

as part of the model input.733

In vertex states, the agent can either Go Straight, Turn Right, Turn Left, U-Turn, each of which has a734

cost of 10.0, or Wait, which has a cost of 1.0. All maneuvers succeed deterministically. In edge states, the agent735

can either Continue or Overtake an obstruction, each with unit cost. Overtake is assumed to succeed with736

probabilities [0.2, 0.5, 0.8] depending on the number of lanes. Continue fails deterministically in the presence of737

an obstruction, and if there is no obstruction transitions the agent to the end-vertex of the edge with probability738

p ∝ speed(e) / length(e) or otherwise to the same edge with some probability of an obstruction occurring. We model739

the expected duration as part of the transition function, rather than the cost function, to allow for the development of740

an obstruction in the AV’s lane while traversing an edge segment which may be very long in real life.741

We consider the following levels of autonomy, L = {l0, l1, l2, l3} where l3 does not require any involvement from742

the human at all (i.e. we assume the probability of an override is 0), l2 allows the agent to execute an action under743

supervision, during which the human may override the action if they deem it unsafe, l1 which requires explicit approval744

from the human for an action prior to its execution during which, if approval is received, the agent may attempt to745

execute the action under supervision, and if the action is disapproved by the human the agent must select a different746

action to perform, and l0 which requires full transfer of control to the human to complete the action.747

The autonomy profile, κ, is initialized to L in edge states without an obstruction and otherwise to {l0, l1, l2}. The748

feedback profile, λ, is initialized to be uniformly random over the possible feedback signals. There is an associated749

cost of 10.0 to the human for operating in l0, as the human is required to manually control the vehicle, a cost of 2.0 for750

operating in l1, a cost of 1.0 in level l2, and no additional cost to the human when operating in l3. The system incurs a751

cost of 3.0 when receiving a negative response in l1 and a cost of 10.0 when receiving an override in l2 as we assume752

that the human completes the intended action.753

6.1.2. Results754

To validate the CAS model in the AV navigation domain, we randomly selected a start node and goal node each755

episode to ensure that the system had the ability to visit the entirety of the graph. We repeated this for four different756

human authorities where we varied their consistency: 0.8, 0.9, 1.0 (i.e. perfectly consistent), and, in the final case,757

a human who starts with a very low consistency (0.6) to reflect their poor understanding of the capabilities of the758

system, but increases their consistency by a small amount (0.1) each episode to reflect their improved understanding759
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of the capabilities of the system over time as they interact with it. Figures 8, 9 and 10 report the results from the760

experiment conducted in the autonomous vehicle navigation domain.761

Figure 8: Empirical results from simulations of a fixed route
(12 → 7) showing the expected cost (top) to goal of a CAS
and the average cost (bottom) over 100 trials with a CAS (blue)
and without a CAS (red) as a function of the number of signals
received.

Figure 8 depicts the results on a fixed route (node762

12 to node 7 in Figure 7). The top graph shows the ex-763

pected cost of the route and the bottom graph shows764

the actual mean cost (averaged over 100 simulations)765

of the CAS (blue) compared against an agent just us-766

ing the domain model agnostic to its competence, with767

a human overriding as necessary (i.e. effectively al-768

ways operating in level l2) (red). These results demon-769

strate that by learning an accurate competence model770

and incorporating that into the planning model, a CAS771

can efficiently (< 40 feedback signals) improve both772

its average performance and expected performance,773

significantly outperforming a system that is agnostic774

to its competence and the dynamics of human interac-775

tion. These experiments were taken from the human776

with consistency ϵ = 0.9 but we note that very similar777

results were obtained in all cases.778

Figure 9 depicts in the top two rows the conver-779

gence of the level-optimality of the competence-aware780

system as a function of the number of feedback signals781

received, and in the bottom row the number of signals782

received over the course of 100 episodes (where each783

episode is a random route) for a system with a CAS784

(blue) and a system without a CAS (red). Each graph785

corresponds to a human authority with a different con-786

sistency, ϵ, as detailed above. In all cases, the level787

optimality reaches 100% over all reachable states in788

the domain. Interestingly, in Figure 9d, the results are789

more comparable to a human with a fixed consistency790

of 0.9 or 1.0 in the level-optimality convergence rate791

than they are to a human with a fixed consistency of792

0.8 which requires roughly twice as many feedback793

signals to converge to level-optimality. This demon-794

strates that even a CAS with a human who starts with795

an initially poor understanding of the system’s capabilities, and consequently low consistency, can efficiently reach796

level-optimality if the human’s understanding and consistency improves at a consistent rate. The figures in the bottom797

row illustrate that without a CAS the number of feedback signals provided by the human grows linearly, demonstrat-798

ing the significant disparity in burden placed upon the human in a system without a CAS model compared to a system799

with a CAS model. We only depict the results for 0.8 and 1.0 for the sake of space, but the results look very similar for800

all ϵ-consistencies considered. Overall these results demonstrate the primary goal of the CAS model which is that it801

enables a system to efficiently reach level-optimality, optimizing the trade-off between autonomous performance and802

human assistance, thereby reducing the net burden placed on the human over the course of the system’s operation.803

Figure 10 depicts the change in routes taken between the first episode and the 100th episode for the CAS model804

for four fixed routes. Here, purple denotes parts of the route taken that are the same, red denotes parts of the route that805

are taken in the first episode but not the 100th, and blue denotes parts of the route that are taken in the 100th episode806

but not the first. This figure illustrates the macro policy changes made as the CAS learns its competence—namely807

altering its route to avoid states or trajectories of low competence which would require excessive human assistance—808

in addition to the micro changes of selecting which level of autonomy to use in any given situation. In general, we find809

that the AV’s behavior changes to avoid areas densely populated with pedestrians, occlusions, and single lane roads,810

such as downtown Amherst (nodes 8-11) and University of Massachusetts Amherst (nodes 6-8).811
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(a) ϵ = 0.8 (b) ϵ = 0.9

(c) ϵ = 1.0 (d) ϵ = 0.6:1.0

(e) ϵ = 0.8 (f) ϵ = 1.0

Figure 9: Empirical results from the autonomous vehicle navigation domain with varying levels of human consistency showing
the level-optimality as a function of the number of feedback signals received (9a – 9d) and the number of feedback signals received
over the first 100 routes executed (9e - 9f). In Figure 9d, the human consistency increases after each route is executed, mimicking
a human whose consistency improves the more it interacts with the system.
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Figure 10: Comparison of routes taken before and after the CAS learns its competence. Purple indicates shared route, red indicates
route taken by starting model alone, blue indicates route taken by ending model alone. Green and yellow circles denote start and
end nodes respectively.

6.2. Autonomous Vehicle Obstacle Passing812

6.2.1. Domain Description813

Figure 11: Illustration of the AV
obstacle passing domain.

In this domain, modeled after the problem depicted in Example 1, an au-814

tonomous vehicle must overtake an obstacle that is blocking its lane on a one-lane815

road. Importantly, this maneuver required that the AV drive into the oncoming816

traffic’s lane in order to overtake the obstacle, a potentially dangerous maneuver.817

Each state is represented by the vehicle’s position (0-4), the position of an on-818

coming vehicle (0-3, or unknown), and whether the oncoming vehicle has given819

priority to the AV to attempt its overtake. Model parameters dictating the behav-820

ior of oncoming vehicles is assumed to be known offline and given as part of the821

model input.822

The autonomous vehicle can perform the following actions: Wait, Edge, and823

Go. Edge provides visibility of oncoming traffic to the AV if unknown and oth-824

erwise advances the AV’s position with probability 0.5. Go deterministically ad-825

vances the AV’s position, which results in a crash if the AV and an oncoming826

vehicle share the same position. Stop holds the AV’s position, during which time827

the oncoming vehicles position may change (or become empty), or the oncoming828

vehicle may give priority to the AV. If the AV has priority it is assumed that the on-829

coming traffic will stay stopped until the AV has finished its overtake. All actions830

have unit cost, and crashing incurs a very high cost.831
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(a) Autonomous Vehicle Obstacle Passing Domain Level-
Optimality (b) Autonomous Vehicle Obstacle Passing Average Cost

Figure 12: Empirical results from the autonomous vehicle obstacle passing domain depicting the level-optimality (left) over all
reachable states (red) and the full state space (blue), and the average cost (right) over 1000 simulations, as a function of the number
of feedback signals received.

We consider the following levels of autonomy, L = {l0, l1, l2} where l2 does not involve the human at all, l1 allows832

the agent to execute an action under supervision, during which the human may override the action if they deem it833

unsafe, and l0 which requires full transfer of control to the human to complete the action. Note that we do not include834

the level l1 from the prior domain (referred to earlier as “verified autonomy” in Table 1) due to the second-to-second835

nature of decision making in this safety-critical domain, where prompting the human for explicit approval before836

every action may be impractical or even dangerous.837

The autonomy profile, κ, is initialized to {l0, l1} in all cases; i.e., in such a safety critical domain it is expected that,838

initially, the human is always aware and ready to override the system. As above, the feedback profile λ is initialized839

to be uniformly random. The human incurs a cost of 10.0 when the CAS operates in l0 but is assumed to complete840

the maneuver successfully (i.e., the human does not give back control part way through passing the obstacle), a cost841

of 1.0 when supervising in l2, and no cost in l3. The system receives a penalty of 10.0 when being overridden by the842

human.843

6.2.2. Results844

In the AV obstacle passing domain, the problem—i.e., the initial state and goal state—stayed fixed each episode.845

Figures 12a and 12b report the results from the experiment conducted in the autonomous vehicle obstacle passing846

domain. Figure 12a shows the level-optimality of the CAS over all states in the domain and all reachable states847

(each episode) plotted against the number of feedback signals received from the human, in this case consisting only848

of overrides. The figure illustrates that the CAS is able to converge to level-optimality on all reachable states in the849

domain with slightly more than 100 feedback signals. The slower convergence rate is due to a stricter requirement850

on gated exploration due to the more safety-critical nature of the domain (see Appendix A for details). 100% Level-851

optimality is not reached on the whole state space due to the absence of a portion of the state space ever being visited852

(or even reachable), preventing the human authority from providing any feedback for actions taken in those states.853

Figure 12b reports the expected cost of overtaking the obstacle and illustrates that the expected cost decreases as854

the level-optimality increases, corroborating the results from the previous domain. This also demonstrates that, in855

certain domains, performance may be improved to near optimal performance without even needing to converge to full856

level-optimality across the entire state space due to variations in state reachability trends.857

6.3. Iterative State Space Refinement858

To validate the iterative state space refinement method, we implemented Algorithm 1 and compared the perfor-859

mance of a CAS with Algorithm 1 and a CAS without it on both of the domains defined above (autonomous vehicle860

navigation and autonomous vehicle obstacle passing). In both experiments we considered different human users of861

the autonomous vehicle system, each of whose feedback was conditioned not just on the features already used by the862

CAS model that directly impacted the CAS’s technical performance (i.e., the existence of a pedestrian, an occlusion,863
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etc.) but additionally on auxiliary features which are tracked by the autonomous vehicle but not included in its a priori864

planning model, as the features in question are different for each person, and do not (directly) impact the transition865

and cost dynamics of the system.866

In the AV navigation domain, the inactive feature set included the following features: whether the AV has a trailing867

vehicle, a vehicle to its left, or a vehicle to its right, whether the AV has been “waiting” to move, whether it is daytime868

or nighttime, and whether it is sunny, rainy, or snowy. In the AV obstacle passing domain, we consider the same869

inactive features except whether there is a vehicle to the AV’s left or right, as the problem is for single lane roads.870

In the AV navigation domain, we consider two “people” implemented as software agents: the first person is871

cautious with low trust in letting the AV operate in challenging environmental conditions (even though they do not872

impact the AV in simulation), for instance taking over control when the system attempts an overtake on a road segment873

when it is either snowing or rainy and night time. The intuition here is that the weather conditions impacts the human’s874

ability to fully assess the situation and hence the veracity of the AV’s actions, prompting them to take control of the875

vehicle themselves. We refer to them as “Cautious”. The second person is motivated by more social factors, and is876

more likely to take control of the vehicle when there is a trailing vehicle the AV is blocking, and or when the AV has877

been stopped for too long (either on a road segment behind an obstruction, or at an intersection). We refer to them as878

“Conscientious”.879

In the AV obstacle passing domain, we consider three “people” implemented as software agents (see Appendix880

A for more details): the first is motivated by the same features as the first person above; we again refer to them as881

“Cautious”. The second person is motivated by whether there is a trailing vehicle that they are blocking, prompting882

them to take control if the AV waits to long to attempt its overtake; we also refer to them as “Conscientious”. The883

third person is in a rush and takes over control if the AV is waiting too long or doesn’t go when it has priority; we884

refer to them as “Rushed”. Each simulated person is perfectly consistent up to some fixed noise ϵ, within which they885

return uniformly random feedback.886

We note that in both domains, some inactive features are never used by any of the humans simulated, and hence887

we aim to show that our approach does not simply “pick all features" in the inactive feature space. Additionally, one888

important distinction between the two domains is that the additional inactive features may change at each new state889

in the AV navigation domain, but are fixed in the AV obstacle passing domain at the beginning of each episode due to890

the short time horizon of the problem. Details of the simulated humans can be found in Appendix A.891

6.3.1. Results892

Figure 13 shows the results of our experiment, comparing the performance of a CAS with and without the iterative893

state space refinement (ISSR) approach (Algorithm 1) implemented, on the AV navigation domain with random routes894

each episode. Figure 14 shows the results for the AV obstacle passing domain. In Figure 13, we can see that the CAS895

with the ISSR implemented converges to higher level-optimality on all state in the domain, and 100% level-optimality896

on all states visited each episode, leading to far fewer feedback signals from the human, for both human authorities.897

Additionally, in both cases, the only features added to the active feature space where the features in the inactive feature898

space that were actually used by the humans in determining their feedback.899

Figure 14 shows the results for the AV obstacle passing domain. Note that we include results on all reachable900

states here because the additional features stay fixed through each episode, whereas in the AV Navigation domain,901

they can change throughout an episode and the transition dynamics are (by design) not modeled by the agent.902

There are several key takeaways from these graphs. First, if we consider the level-optimality over all states in903

the domain, it is higher for the ISSR-CAS in the cases of all three human authorities, than for the CAS without904

ISSR active, indicating that our approach is enabling the CAS to generalize its competence model to a larger portion905

of the (unvisited) state space. We remark that by adding features in order to refine the state space, the number of906

states increases multiplicatively with each feature added, meaning that not only is the ISSR-CAS level-optimal in a907

larger portion of the state space, that directly translates to being level-optimal in a larger number of unique situations.908

More important are the results depicting the level-optimality over all visited states each episode; here, we see that909

this reaches 100%, or near 100%, for all 3 human authorities with fewer than 50 feedback signals. However, we910

observe an interesting phenomenon for the CAS without ISSR active; namely, we see several clusters of green at the911

far right (at which point no additional feedback signals were received). This phenomenon is due to the fact that the912

CAS learns to operate in l0, that is, full human control, in a large portion of the statespace because it cannot properly913

discriminate the feedback received from the human conditioned on features in the inactive feature space, which is914
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(a) Person 1 (Cautious)

(b) Person 2 (Conscientious)

Figure 13: Iterative state space refinement results for two human authorities in the autonomous vehicle navigation domain, showing
the level optimality after each episode as a function of the number of feedback signals with (left) and without (right) Algorithm 1
implemented. Colors indicate the level-optimality over states visited during each episode (green) and the full state space (blue).

correct for certain settings of these features (which, to reiterate, are set and fixed at the start of each episode), but not915

for others. However, because the state space is not refined enough to consider these decision boundaries, the CAS916

learns to operate at the incorrect level of autonomy (relative to the full feature space) in certain conditions.917

These results demonstrate that the ISSR method is effective at enabling a competence-aware system to improve its918

competence online when missing from its active feature space features used by its human authority.919

7. Discussion and Future Work920

7.1. Autonomy Profile Initialization921

Because we restrict the system to choose policies fromΠκ, if the autonomy profile κ is altered, so too is the space of922

allowed policies. Hence, there is a trade-offwhen setting the initial constraints on the allowed autonomy of the system,923

i.e., κ. One can take a conservative approach and constrain the system significantly, for instance setting |κ(s, a)| = 1924

so that a single level is deterministically selected for every (s, a) ∈ S × A, reducing the problem complexity to solving925

the underlying domain model. However, doing so risks a globally sub-optimal policy with respect to L and may,926

depending on the initial κ, make reaching the globally optimal policy impossible. On the other extreme, one can take927

a risky approach and not constrain the system at all a priori, leaving the decision of choosing the level of autonomy928

completely up to the system when solving its model. This approach, while necessarily containing the optimal policy929

(subject to the agent’s model) is naturally slower due to the larger policy space and inherently less safe as the agent930
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(a) Person 1 (Cautious)

(b) Person 2 (Conscientious)

(c) Person 3 (Rushed)

Figure 14: Iterative state space refinement results for three human authorities in the autonomous vehicle obstacle passing domain,
showing the level optimality after each episode as a function of the number of feedback signals with (left) and without (right)
Algorithm 1 implemented. Colors indicate the level-optimality over states visited during each episode (green), all reachable states
each episode (red), and the full state space (blue).
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can take actions in undesirable levels. Figure 4 illustrates different partitionings of the policy space under different931

autonomy profiles.932

We propose that in practice, the desired initialization is somewhere in the middle; κ should be less constraining933

in situations where the expected cost of failure is relatively low, and more constraining in situations where it is high.934

While the model makes no such requirements, in many practical settings such information may be at least partially935

known a priori for a specific domain. For instance, in an autonomous vehicle, κ should be more constraining initially936

in situations involving pedestrians, poor visibility, or chaotic environments such as large intersections with multiple937

vehicles; however, initial testing may indicate that driving along a highway is low-risk and may not require a highly938

constraining κ.939

7.2. Model Assumptions940

We now discuss the practical considerations of the two main assumptions made in Section 3.4: (1) the human au-941

thority,H , provides consistent feedback and (2) the human authority’s feedback comes from a stationary, Markovian942

distribution.943

Implicit in Assumption (1) is that humans respond appropriately to each situation, possibly with some noise944

representing the likelihood of human error. However, because of the limited scope of the system’s domain model, it945

could be that perfectly consistent feedback fromH’s perspective is perceived to be random by the system, particularly946

when it is not aware of the domain features that explain the human feedback. As an example, consider a robot that can947

open ‘push’ doors and cannot open ‘pull’ doors, but does not model this discriminating feature. If the robot cannot948

discriminate between these types of doors, consistent and correct human feedback (approving autonomously opening949

‘push’ doors only) may be perceived by the robot to be arbitrary or random. Although in practice one may wish950

to avoid such situations, we emphasize that the system will still converge to its competence for the state features it951

uses—possibly a low competence—when the feedback distribution appears to be random.952

Assumption (2)—the human feedback distribution λH is stationary and Markovian from the start—implies that953

the human has good knowledge of the system from the start. That may not be realistic in certain domains. It is more954

likely that the feedback signals may vary based upon the observed performance of the system over time. However,955

as the human authority observes the system’s performance, it is reasonable to assume that their feedback distribution956

will eventually reach a stationary point as long as the system’s underlying capabilities stay fixed. Therefore, even if957

there are erroneous feedback signals provided early in this process, in the limit the system will still converge to its958

competence. Two possible means of expediting this is to introduce a training phase at the beginning of the system’s959

deployment to allow the human to observe the system’s performance and develop accurate expectations regarding the960

system’s capabilities, and to introduce standardized feedback criteria that is made known to the human a priori.961

7.3. Partially Observable Models962

As stated in Section 3, the CAS is designed to handle fully-observable sequential decision-making models like963

SSPs and, more generally, MDPs, but is not immediately compatible with partially observable models (or mixed-964

observability models) despite partial observability and other limitations on state observability being a natural con-965

tributor to limitations on system competence. The two main barriers in directly applying the CAS to models like a966

POMDP are (1) the challenge of appropriately associating feedback signals with domain states for learning purposes967

when the system only has access to a belief state at any given time, and (2) the challenge in defining the competence968

of a belief-state, where the system implicitly does not know its true state. Future work will consider ways in which969

we can extend both the representation of feedback signals and the definition of competence, and consequently the970

CAS model, to such domains in a well-defined manner, for instance by changing the definition of competence from a971

function on states to a function on observations.972

8. Conclusion973

We introduce a new framework for representing, learning, and reasoning with self-competence models in semi-974

autonomous systems. Competence in our approach represents the level of autonomy that the system can handle975

reliably based on human feedback. More precisely, we define competence as the optimal level of autonomy in any976
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given situation, consistent with perfect human feedback. We present a novel decision-making framework, competence-977

aware systems, that enables a semi-autonomous system to learn its own competence over time through interactions978

with a human authority. The result is a system that can handle risky scenarios by relying on the human authority to979

compensate for limitations or constraints on its autonomous abilities, while simultaneously optimizing its autonomous980

operation to reduce unnecessary reliance on humans.981

We illustrate the operation of a competence-aware system with a running example and prove several theoretical982

properties of the CAS model. In particular, we prove that under standard convergence assumptions the model will983

converge to level-optimality, guaranteeing that the system consistently operates at its competence. We test the efficacy984

of our model empirically on two simulated autonomous vehicle domains, at different levels of reasoning abstraction,985

and demonstrate that the competence-aware system can efficiently reach high level-optimality, optimizing the trade-986

off between its own autonomous operation and human assistance, and leading to less burden on the human and a more987

cost-effective overall plan.988

Preliminary internal testing on an autonomous vehicle prototype suggests that designing a perfectly specified CAS989

model for real-world, highly-unstructured domains is a non-trivial task. Even with expert domain knowledge, an initial990

model may be missing features used by the human in determining their feedback for the CAS. To avoid solving this991

naively with the inclusion of all possible system features in the CAS’s domain model (many of which would serve no992

functional purpose but would cause the state space to explode and render planning intractable), we devise the iterative993

state space refinement approach. Described in Algorithm 1, the approach provides a competence-aware system the994

means to gradually refine its state representation online, enabling it to better identify the boundaries between state-995

action pairs with difference competences. This ability is particularly relevant in the context of systems deployed in996

the real world where human feedback may be conditioned on features that are unspecified or unknown a priori. Such997

features may not impact the original stated objectives of the system, but could influence unstated human preferences,998

trust, safety, and social conscientiousness. We prove that, when possible, this approach is guaranteed to reach a999

point where all states are discriminated, and demonstrate empirically that a CAS with this approach implemented far1000

outperforms a CAS without it when the CAS cannot properly learn from human feedback due to missing state features.1001

In particular, the modified CAS requires both fewer total feedback signals from the human, placing less burden on1002

the human, and is more sample efficient with the feedback it receives in learning its competence, leading to a higher1003

level-optimality for the CAS.1004

The primary direction of future work lies in extending competence-aware systems to models with limited state ob-1005

servability, such as MOMDPs and POMDPs. This includes devising a method of associating human feedback acquired1006

in belief-states with underlying states in the domain, when the system does not know which state is responsible for1007

the feedback, and generalizing competence to belief-states in a well-defined way that still captures the risk-sensitive1008

semantics of the current approach. We are also interested in extending our model of human feedback to account for1009

temporal uncertainty about the feedback signals, and to handle both proactive and retroactive feedback that is not1010

necessarily associated with the action being currently executed.1011
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Appendix A.1210

In this section we describe additional details of our experimentation. In all of our experiments, our models were1211

solved using LRTDP [12], and the feedback profiles were implemented as random forests using the Julia package1212

DecisionTree.jl in the Julia MLJ framework [11] with default parameters. In our implementation of Algorithm 1, our1213

validation step simply required a Matthews correlation coefficient that was (1) positive (i.e. better than random) on1214

the validation data set and (2) better than the Matthews correlation coefficient of the current feedback profile on the1215

same validation data set (with the discriminator masked out) by at least 0.2.1216

Gated Exploration1217

In all experiments, we used the gated exploration strategy as defined in Definition 8. While a variety of different1218

distributions could be used for the exploration strategy, we use an extension of the standard Boltzmann softmax1219

distribution [49] over q-values in the adjacency set of l ∈ L:1220

P(l′) = adj(κ(s, a), l′)
exp(−q(s, (a, l′); λ̂))∑

l′′∈L adj(κ(s, a), l′′) exp(−q(s, (a, l′′); λ̂))
(A.1)

where q(s, (a, l); λ̂) = C(s, (a, l)) +
∑

s′∈S T (s, (a, l), s′)V(s′; λ̂) is the expected cumulative reward when taking action1221

(a, l) ∈ A in state s ∈ S conditioned on the current feedback profile λ̂.1222

To improve exploration efficiency, we introduce a potential-based mechanism in our experiments in which, for1223

each s ∈ S and a ∈ A, we maintain a potential for each level l ∈ L, γs,a,l, which is updated at each level-exploration1224

step, defined as1225

γt+1
s,a,l ←

0 l′ is chosen
min
(
γt

s,a,l + P(l), 1
)

otherwise
(A.2)

where γt
l is the potential at time t and P(l) is defined in Equation A.1. For readability purposes, define γt(s, a, l) :=1226

γt
s,a,l; given this potential function we can slightly alter Equation A.1 to be1227

P̂(l′) = adj(l, l′)
exp(γt(s, a, l′))∑

l′′∈L adj(l, l′′) exp(γt(s, a, l′′))
(A.3)

which defines a new distribution from which to sample new levels of autonomy to explore.1228

In our experiments, a potential matrix was initialized for the CAS model and updated each time the autonomy1229

profile was updated via gated exploration. Gated exploration was implemented by sampling from the above distribu-1230

tion to update the autonomy profile for each (s, a) input by including the sampled level if not in κ(s, a) already, and1231

otherwise doing nothing. The “gated” element was simulated in all experiments by observing the likelihood of an1232

override, and adding the highest level (the only level disallowed initially) if sampled if the likelihood is below 0.151233

for the AV navigation domain or below 0.05 for the AV obstacle passing domain.1234

Simulated feedback1235

All human feedback in our experiments is fully simulated; the feedback of each simulated agent is determined1236

by set rules based on the state and action up to their consistency ϵ. In the other 1 − ϵ part of the time we return a1237

random feedback signal drawn uniformly from the possible feedback signals for the given level of autonomy. Below,1238

we describe the rules behind the simulated feedback in our experiments. The first two cases refer to feedback rules1239

present across all simulated humans for the base domain. The rest of the cases refer to feedback rules present for spe-1240

cific simulated humans. Note that all feedback rules mentioned directly correspond to competences of no autonomy1241

when the human would override or disapprove an action, and unsupervised autonomy otherwise; there is no situation1242

in our domain where the optimal action to perform is in verified or supervised autonomy given a perfect model of the1243

human’s feedback.1244

1245

Autonomous Vehicle Navigation The human overrides or disapproves overtaking an obstruction in an edge state1246

when there is only a single lane, preferring to it themselves. When making a right turn at an intersection, which1247
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is considered a generally safe maneuver, the human overrides the maneuver if there is on occlusion, a pedesrtrian,1248

and at least one other vehicle, indicating the presence of numerous other actors in a potentially chaotic environment.1249

When going straight, making a left turn, or making a U-turn at an intersection, which are considered more challenging1250

maneuvers as all potential cross-traffic must be considered, the human will override if there is an occlusion limiting1251

visibility and a pedestrian or more than one vehicle, or if there is a pedestrian and more than two vehicles even without1252

an occlusion limiting visibility. In all other cases, the human approves or does not override the system’s behavior.1253

1254

Autonomous Vehicle Obstacle Passing The human overrides the action Stop if the AV is fully in the oncoming1255

lane or if they can see that there is no oncoming vehicle. The human overrides the action Edge if the AV has visibility1256

of oncoming traffic as the AV should either commit to the overtake (if safe to do so) or stop and wait until the overtake1257

is safe. Finally, the human overrides the action Go if there is no visibility of oncoming traffic, or if there is oncoming1258

traffic and the AV does not have priority to go.1259

1260

AV Navigation – Cautious The human overrides or disapproves the vehicle from acting at all if the weather is1261

snowy and it is night time, preferring to drive the whole way in these conditions. The human overrides or disapproves1262

the overtake of a vehicle if it is snowy, or if it is rainy, nighttime, and a two-lane road. At intersections, the human1263

also prefers to take control if it is rainy and nighttime.1264

1265

AV Navigation – Conscientious The human overrides or disapproves the vehicle’s maneuver if there is a trailing1266

vehicle when overtaking an obstruction, or if there is a trailing vehicle when the AV is at an intersection and either1267

takes the Wait action or otherwise if there is at least one additional vehicle at the intersection, to hurry the AV through1268

the intersection.1269

1270

AV Obstacle Passing – Cautious The human overrides the vehicle if it is either snowy or rainy and nighttime, as1271

the human does not trust the AV to handle the potentially dangerous maneuver in these conditions where the human1272

feels less sure of what the AV can detect.1273

1274

AV Obstacle Passing – Conscientious The human overrides the vehicle if there is a trailing vehicle and the vehi-1275

cle takes the action Stop, or is stuck waiting with a trailing vehicle and takes the action Edge, as they feel socially1276

pressured to execute the overtake expediently by the presence of the trailing vehicle.1277

1278

AV Obstacle Passing – Rushed The human overrides the vehicle if it is stuck waiting, takes the action Stop, or1279

if the vehicle has priority but does not take the action Go.1280


