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Abstract

Reward learning algorithms utilize human feedback to infer a reward function, which is then used to train an AI system. This

human feedback is often a preference comparison, in which the human teacher compares several samples of AI behavior

and chooses which they believe best accomplishes the objective. While reward learning typically assumes that all feedback

comes from a single teacher, in practice these systems often query multiple teachers to gather sufficient training data. In this

paper, we investigate this disparity, and find that algorithmic evaluation of these different sources of feedback facilitates

more accurate and efficient reward learning. We formally analyze the value of information (VOI) when reward learning

from teachers with varying levels of rationality, and define and evaluate an algorithm that utilizes this VOI to actively select

teachers to query for feedback. Surprisingly, we find that it is often more informative to query comparatively irrational

teachers. By formalizing this problem and deriving an analytical solution, we hope to facilitate improvement in reward

learning approaches to aligning AI behavior with human values.
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1. Introduction
Standard AI and machine learning algorithms require the

designer to specify a cost or reward function. This objec-

tive incentivizes desired behavior and penalizes mistakes,

teaching the system how to perform the task. While

such objectives are easy to manually specify for prob-

lems with clear win conditions, such as games [1, 2, 3] and

tasks with clear goals, such as image classification [4, 5],

they can be challenging to formalize for more nuanced

tasks [6]. For example, Lee et al. [7] find that humans

struggle to define an objective that incentivizes bipedal

locomotion, despite being experts in both machine learn-

ing and walking. By incentivizing incorrect behavior,

misspecified objectives can lead to useless or even dan-

gerous outcomes [8]. Ensuring that AI systems optimize

objectives that align with our own is a crucial part of

building safe and beneficial AI.

Reward learning techniques enable AI systems to learn

their objectives by observing and interacting with hu-

mans instead of requiring their designers to specify these

objectives manually [9]. Humans can train reward learn-

ing systems using a variety of feedback modalities, in-

cluding demonstrations [10, 11, 12], pairwise compar-

isons [7, 13, 14], natural language [15], numeric val-

ues [16], corrections [17], and proxy rewards [18, 19].

Reward learning from pairwise comparisons in particu-

lar has proven remarkably effective across a variety of

tasks, including complex physical maneuvers for con-

tinuous control systems [7, 14] and text summarization
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for language language models [20, 21]. In the future, it

may even be possible to use reward learning to train AI

systems to assist humans in researching safe AI [8, 22].

However, to infer reward functions from human

feedback, reward learning systems must model human

decision-making, and incorrect human decision-making

models often leads to poor inference [23, 24, 25]. More-

over, reward learning systems typically assume that all

feedback comes from a single distribution or teacher, de-

spite querying multiple teachers to generate sufficient

feedback. However, humans often vary in their expertise,

focus, and intelligence, affecting the noisiness of their

feedback. The practice of conflating all feedback implic-

itly disregards the differences between different teachers,

increasing the likelihood of human model misspecifica-

tion and the limitations of reward learning [26].

In this work, we extend reward learning to take ad-

vantage of differences between teachers. We develop a

Bayesian reward learning algorithm that actively selects

which teacher to query based on the noisiness of their

feedback and the learner’s current belief. We find that

querying a less rational teacher can often be more in-

formative than querying a more rational teacher, since

teacher mistakes inform the agent of the relative values of

alternatives. For example, imagine that two teachers are

comparing two alternatives, 𝐴 and 𝐵. 𝐴 is worth more

than 𝐵, but only slightly. If the first teacher is perfectly

rational, they will always select 𝐴 over 𝐵. The learner

can infer from this that 𝐴 is preferable to 𝐵, but has no

way to learn how significant the distinction is. However,

assume that the second teacher is somewhat less ratio-

nal, and occasionally mixes up alternatives of similar

value. Then they will typically choose 𝐴, but sometimes

choose 𝐵, and this allows the learner to infer that the

gap between 𝐴 and 𝐵 is small. Section 3 formalizes this
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rationality model and inference procedure.

The rest of the paper is as follows. In Section 2, we dis-

cuss prior work on reward learning, active learning, and

human modeling. In Section 3, we describe the mechan-

ics of reward learning, including the model of human

rationality and the metrics that will be used to measure

the value of information (VOI) of teacher feedback. In

Section 4, we propose a teacher selection algorithm that

selects which teacher to query for feedback at each time

step based on the modeled rationality of each teacher and

the learner’s belief distribution over the reward function.

In Sections 5 and 6, we present theoretical and empirical

results, showing that the learner’s belief will eventually

converge to the true reward function under the teacher

selection algorithm, that querying less rational teachers

can often be more informative, and that our teacher selec-

tion method outperforms simple heuristics like always

querying the most rational teacher. By formalizing the

problem of learning from multiple teachers and deriving

an analytical solution, we hope to facilitate improvement

in reward learning approaches to value alignment.

2. Related Work
Reward Learning Reward learning techniques allow

AI systems to learn reward functions by observing or

interacting with humans. For example, inverse reinforce-
ment learning agents observe human behavior or policies,

and then infer an underlying reward function that the be-

havior optimizes [10, 11, 12]. Recent advances in reward

learning have focused on learning from preference com-

parisons. Here, human teachers observe paired samples

of system behavior, then choose which sample they prefer

out of each pair. The system learns a reward model that

maximizes the likelihood of these preferences, then uses

that model to generate a reward signal to guide its behav-

ior. This technique has been successfully applied to many

domains, from continuous control [7, 14] to language

generation tasks [20, 21]. Reward learning can also use a

variety of other feedback modalities, including preference

comparisons [7, 13, 14], natural language [15], numeric

values [16], corrections [17], and proxy rewards [18, 19],

but we focus on preference comparisons in this paper

due to its recent success.

Active Reward Learning Human feedback is expen-

sive and time-consuming to generate, so reward learn-

ing algorithms must learn efficiently from limited data.

They do this in part by actively selecting the queries that

are sent to human teachers in order to maximize the ex-

pected VOI of human feedback. Sadigh et al. [13] assume

that the system is a Bayesian learner, actively synthesiz-

ing queries that maximize the expected volume removed

from the learner’s posterior. Bıyık and Sadigh [27] de-

Figure 1: Our active reward learning approach.

velop efficient approximations to this method and show

how to integrate active query selection and reward learn-

ing in practice. Lee et al. [7] take a different approach,

empirically evaluating various heuristic strategies for

query selection and finding that uncertainty-based sam-

pling methods tend to perform the best. However, all of

this previous work focuses on choosing which queries to

send to the teachers. In this paper, we instead consider

which teachers to send these queries to.

Human Modeling To infer reward functions, AI sys-

tems must model the behavior of humans. Early work on

reward learning assumed that human behavior was per-

fectly rational and that human teachers always chose the

alternative that maximized their reward [10]. Later work

models human behavior as pedagogic [24], systematically

biased [28], and noisily or Boltzmann-rational [9, 12].

We will follow recent work on learning from human

preferences [7, 9, 12, 14] and model human teachers as

Boltzmann-rational, making choices according to a well-

known probability model specified later in the paper.

3. Active Reward Learning
In this section, we formalize the problem of selecting the

most informative teacher to query in order to gradually

learn the correct reward model. In particular, we are

interested in greedily selecting the teacher to query at

each time step such that the reward model of the agent

efficiently converges to the correct reward model.

At a high level, the teacher selection problem begins

with a set of items or trajectories to compare, along with a

set of human teachers to evaluate those comparisons. The

human teachers each have a different level of rationality

that is known a priori, meaning that the probability of a

given human teacher making a mistake by preferring a

less valuable item over a more valuable item is known in

advance. During each time step of our approach depicted

in Figure 1, two items are sampled from the set of items

(Step 1) and then a human teacher is selected to be queried

based on these items and the current belief about the



reward model (Step 2). The human teacher is asked which

of the two items they prefer (Step 3), and their preference

is used to update the reward model (Step 4). This process

of selecting a query and a teacher is repeated until the

reward model converges to the correct reward model.

Query selection is the problem of choosing which items

to present to the teacher [7]. Some approaches to query

selection include choosing the pair of items for which the

preference predictors are most uncertain [7, 14]. Other

approaches to query selection include selecting the pair

of items that ensure that the space of queries is well cov-

ered. Finally, there are more active methods that actively

synthesize queries in order learn more efficiently [13, 29].

Since our focus is on teacher selection rather than query

selection, for the purposes of our analysis we will assume

that queries are sampled uniformly at random. However,

existing methods for query selection can be easily com-

bined with our teacher selection algorithm to further

improve reward learning.

To formalize the problem of teacher selection, this sec-

tion proceeds as follows. We (1) provide a representation

of items and rewards, (2) apply a well-known model of

human rationality to our problem, (3) offer a method for

updating belief distributions that uses preference compar-

isons from a human teacher, and (4) propose two metrics

that measure the correctness of a belief distribution.

Representing Items and Rewards Intuitively, each

item can be represented as a set of features. For example,

a book could be described by the number of pages and

the number of positive reviews or a maneuver made by

a self-driving car could be described by its position and

distance from other vehicles at each time step. Hence,

each item 𝑖 can formally be represented by a feature

vector 𝜑𝑖 ∈ R𝑑
where 𝑑 is the number of features that

describe the 𝑖th item.

Given this representation of an item, the reward 𝑅(𝑖)
for an item 𝑖 can be expressed as a dot product between

the feature vector 𝜑𝑖 and the weight vector w ∈ R𝑑
for

the reward model that is being learned:

𝑅(𝑖) = w⊤𝜑𝑖. (1)

If the items cannot be expressed by a feature vector, this

approach can still be used by treating the feature vector

𝜑𝑖 as a one-hot vector: given the 𝑖th item, the 𝑖th entry

of the feature vector 𝜑𝑖 would be 1 and every other entry

would be 0 while the 𝑖th entry of the weight vector w
would be the reward 𝑅(𝑖) for the 𝑖th item.

During reward learning, the human teacher is pre-

sented with two items and the probability of the human

choosing one item over another item depends on the dif-

ference in reward between the two items at hand. We

therefore express the difference in the reward between

two items 𝑖 and 𝑗 as the equation

𝑅(𝑖)−𝑅(𝑗) = w⊤(𝜑𝑖 − 𝜑𝑗) = w⊤𝜙𝑖𝑗 , (2)

where 𝜙𝑖𝑗 = 𝜑𝑖 − 𝜑𝑗 is the difference in the feature

vectors of the two items.

Modeling Human Rationality Human teachers can

be represented as Boltzmann-rational agents following

a large body of existing work on reward learning [7, 9,

12, 14, 30, 31, 32, 33, 34]. Moreover, we assume that each

teacher has a different known rationality parameter 𝛽
rather than assuming 𝛽 = 1 for all teachers. Boltzmann-

rational teachers are more likely to choose the higher

reward item if they are “more rational" (i.e., a higher 𝛽),

or if the difference in reward between the two items is

greater. The probability that the teacher chooses an item

𝑖 over and an item 𝑗 is given by

𝑃 (𝑖 ≻ 𝑗;𝛽) =
exp(𝛽𝑅(𝑖))

exp(𝛽𝑅(𝑖)) + exp(𝛽𝑅(𝑗))
. (3)

We thus model the human choice probabilistically:

𝑃 (𝐼|w;𝜙𝑖𝑗 , 𝛽) =
1

1 + exp(−𝐼𝛽w⊤𝜙𝑖𝑗)
, (4)

where 𝐼 = +1 if the human prefers item 𝑖 over item 𝑗
and 𝐼 = −1 if the human prefers item 𝑗 over item 𝑖. This

reflects the difference in value of the two items but not

their absolute value. Equation 4 is a logistic model of

the probability of the human preference 𝐼 , where 𝛽 de-

termines the slope. As the difference in reward between

the two items increases, the probability that the teacher

chooses the higher reward item approaches 1.

Updating Belief Distributions The goal of reward

learning is to learn the weight vector w of the reward

model. Given the preference of a teacher 𝐼 , the difference

in feature vectors 𝜙𝑖𝑗 , and the teacher’s rationality pa-

rameter 𝛽, the learner updates its belief over the weights

of the reward model. That is, the belief over the weights

of the reward model is updated such that the reward

model now predicts that the item selected by the teacher

is more valuable than it was prior to the belief update.

Formally, we begin with the current belief distribution

𝑃 (w), which we treat as the prior distribution, and up-

date it according to Bayes’ theorem in the following way:

𝑃 (w|𝐼;𝜙𝑖𝑗 , 𝛽) =
𝑃 (𝐼|w;𝜙𝑖𝑗 , 𝛽)𝑃 (w)∫︀

𝑃 (𝐼|w′;𝜙𝑖𝑗 , 𝛽)𝑃 (w′)𝑑w′ , (5)

where 𝑃 (𝐼|w;𝜙𝑖𝑗 , 𝛽) is given by Equation 4.

Measuring Belief Distribution Error After query-

ing a teacher and updating the belief over the weights

of the reward model w, the belief distribution can be

evaluated on a metric that measures the “correctness” or

the distance of this belief distribution to the true belief

distribution. Here, we consider two such metrics: the



Table 1
The general form of an expected metricℳ along with the expected metrics for mean squared error (MSE) and log loss (LL).

Expected Metric Equation

Ew∼𝑃w
𝐼∼𝑃𝐼|w

[︀
ℳ(𝑃w|𝐼 ,w;𝜙𝑖𝑗 , 𝛽)

]︀ ∫︀
𝑃w

∑︀
𝐼 𝑃𝐼|wℳ(𝑃w|𝐼 ,w)𝑑w

Ew∼𝑃w
𝐼∼𝑃𝐼|w

[︀
MSE(𝑃w|𝐼 ,w;𝜙𝑖𝑗 , 𝛽)

]︀
2
∑︀

𝐼
2∫︀

𝑓𝐼 (w)𝑑w
×

[︁∫︀
𝑓𝐼(w)𝑑w

∫︀
𝑓𝐼(w) ‖w‖2 𝑑w −

⃦⃦∫︀
𝑓𝐼(w)w𝑑w

⃦⃦2
]︁

Ew∼𝑃w
𝐼∼𝑃𝐼|w

[︀
LL(𝑃w|𝐼 ,w;𝜙𝑖𝑗 , 𝛽)

]︀
−
∑︀

𝐼

∫︀
𝑓𝐼(w) log

(︁
𝑓𝐼 (w)∫︀

𝑓𝐼 (w
′)𝑑w′

)︁
𝑑w

mean squared error (MSE) and the log loss (LL). The

MSE measure represents how “far away” the belief dis-

tribution is from the true value while the LL measure

represents the height of the belief distribution at the true

value. In both cases, a lower score indicates a more accu-

rate distribution. Using 𝑄(w) as the belief distribution

over the weight vector w and wtrue as the true weight

vector, the MSE and LL measures are given as follows.

MSE(𝑄(w),wtrue) =

∫︁
𝑄(w)||w −wtrue||2𝑑w (6)

LL(𝑄(w),wtrue) = − log(𝑄(wtrue)) (7)

Note that we will describe a greedy approach that selects

the teacher that in expectation leads to our belief distri-

bution scoring the best on one of these metrics after a

single update in the next section.

Work on active learning from human preferences uses

volume removal (i.e., removing as much of the integral of

the unnormalized distribution as possible) as a metric [13,

27, 33]. However, this may not be an appropriate metric

for teacher selection. This is because a larger Boltzmann

rationality parameter 𝛽 results in a larger volume of the

belief distribution being removed but may not necessarily

lead to a more accurate belief distribution.

4. Teacher Selection
We propose a method for selecting and querying the

teacher that produces the best immediate improvement

in the expectation of a given metric, which approximates

the expected VOI of the teacher feedback. The metrics

evaluate how similar the posterior belief is to the ground

truth reward, so lower scores indicate improvements in

the learned reward model. The algorithm considers un-

certainty over two variables: the ground-truth parameter-

ization of the reward model and the item from the query

that the teacher prefers. In particular, the expectation of

the metric must be taken over the current belief distri-

bution 𝑃 (w) and the probability 𝑃 (𝐼|w;𝜙𝑖𝑗 , 𝛽) of the

teacher preferring each item. Formally, we express the

expectation of a given metric ℳ in Table 1. Note that we

use the notation 𝑃w = 𝑃 (w), 𝑃𝐼|w = 𝑃 (𝐼|w;𝜙𝑖𝑗 , 𝛽),
and 𝑃w|𝐼 = 𝑃 (w|𝐼, 𝜙𝑖𝑗 , 𝛽) throughout this section.

Importantly, the expected value of a given metric only

depends on the known variables 𝜙𝑖𝑗 and 𝛽 along with

the current belief distribution 𝑃w given a straightfor-

ward substitution of Equations 4 and 5. This enables our

method to calculate the expected value of the metric for

a given teacher with the rationality parameter 𝛽. This

will be used to find the teacher to query at each time step:

the teacher with the lowest metric in expectation should

be selected as that would result in a weight vector that is

closest to the true weight vector in expectation.

Finally, given the general form of an expected met-

ric, Table 1 defines the expectations of the MSE and

LL metrics using the function 𝑓𝐼(w) = 𝑃w/(1 +
exp(−𝐼𝛽w⊤𝜙𝑖𝑗)).

Selecting a Teacher To select the teacher to query,

we first calculate the expected metric for each teacher

𝛽 given the current belief distribution 𝑃 (w) and then

select the teacher that would result in the lowest expected

metric score. Formally, the rationality parameter 𝛽*
that

leads to the largest reduction in the expectation of the

metric is defined as follows:

𝛽* = argmin
𝛽∈𝛽

⎡⎣ E
w∼𝑃w
𝐼∼𝑃𝐼|w

[︀
ℳ(𝑃w|𝐼 ,w;𝜙𝑖𝑗 , 𝛽)

]︀⎤⎦ , (8)

where 𝛽 is a vector of the 𝛽 values of the teachers.

Learning a Reward Model To learn the reward

model, the learner begins with an initial belief distri-

bution 𝑃w over the reward function parameterization

and then updates it according to Algorithm 1. First, the

algorithm generates queries of paired items and calcu-

lates 𝛽*
, which is the rationality parameter that leads

to the largest improvement in the expectation over the

correctness metric. The algorithm queries the teacher

with this rationality parameter, and the teacher responds

with a preference indicating which of the two items in the

query they prefer. This preference is used to update the



Algorithm 1: LearnRewardModel(·)
Input: An initial belief distribution 𝑃 (w), a list of the

teachers’ Boltzmann rationality parameters 𝛽,

an expected metric function E[ℳ], and an

entropy convergence threshold 𝜖
Output: A posterior belief distribution 𝑃 (w)

1 converged← False
2 while not converged do
3 𝜑𝑖, 𝜑𝑗 ← GenerateQuery()
4 𝜙𝑖𝑗 ← 𝜑𝑖 − 𝜑𝑗

5 𝛽* ← argmin𝛽∈𝛽 E [ℳ(𝑃 (w),w;𝜙𝑖𝑗 , 𝛽)]

6 𝐼 ← Teacher(𝛽*).Query(𝜑𝑖, 𝜑𝑗)
7 𝑃 (w)← Normalize(𝑃 (w) · 𝑃 (𝐼|w, 𝜙𝑖𝑗 , 𝛽

*))

8 entropy← −
∫︀
𝑃 (w) log𝑃 (w)𝑑w

9 converged← entropy < 𝜖

10 return 𝑃 (w)

belief distribution 𝑃w . The algorithm iterates until con-

vergence, which is when the entropy of the distribution

𝑃w becomes lower than a specified threshold 𝜖.

5. Theoretical Analysis
In this section, we first prove that the belief distribution

will converge to the true distribution and then show that,

under certain conditions, querying a less rational teacher

can result in more informative feedback.

Convergence Algorithm 1 queries multiple teachers

with different 𝛽 values until the reward estimate conver-

gences. Here, we show that this process will make the

belief distribution over w converge to the true value.

Theorem 1. In the limit of 𝑁 → ∞ random queries to
Boltzmann-rational teachers with positive, finite 𝛽 values,
the posterior distribution overw converges to the true value.

Proof. The likelihood of a sequence of human choices

𝐼 ∈ [±1]𝑁 from humans with rationality parameters 𝛽

is 𝑃 (𝐼|w;𝛽) =
∏︀𝑁

𝑖=1 𝑃 (𝐼𝑖|w;𝛽
𝑖
). The posterior distri-

bution over w after a sequence of queries is

𝑃 (w|𝐼;𝛽) ∝
𝑁∏︁
𝑖

𝑃 (𝐼𝑖|w;𝛽
𝑖
)𝑃 (w).

We will show that 𝑃 (w|𝐼;𝛽) → 0 as 𝑁 → ∞ for all

w ̸= wtrue. The Bayes factor between w and wtrue is

BF =
𝑃 (w|𝐼;𝛽)

𝑃 (wtrue|𝐼;𝛽)
=

∏︀𝑁
𝑖 𝑃 (𝐼𝑖|w;𝛽

𝑖
)𝑃 (w)∏︀𝑁

𝑖 𝑃 (𝐼𝑖|wtrue;𝛽
𝑖
)𝑃 (wtrue)

,

where 𝑃 (wtrue|𝐼;𝛽) is the posterior distribution at wtrue.

We can show that BF → 0 as 𝑁 → ∞ except when

w = wtrue. This implies 𝑃 (w|𝐼;𝛽) → 0 except when

w = wtrue. We require 𝑃 (wtrue) ̸= 0 as BF is undefined

otherwise. Trivially, BF = 1 when w = wtrue.

We now consider w ̸= wtrue. We can define the nega-

tive logarithm of BF, which approaches ∞ as BF → 0:

− log (BF)

= − log

(︃ ∏︀𝑁
𝑖 𝑃 (𝐼𝑖|w;𝛽

𝑖
)𝑃 (w)∏︀𝑁

𝑖 𝑃 (𝐼𝑖|wtrue;𝛽
𝑖
)𝑃 (wtrue)

)︃

= −
𝑁∑︁
𝑖

log

(︃
𝑃 (𝐼𝑖|w;𝛽

𝑖
)

𝑃 (𝐼𝑖|wtrue;𝛽
𝑖
)

)︃
− log

(︂
𝑃 (w)

𝑃 (wtrue)

)︂
.

The first term is the sum of many terms. If this term

approaches ∞ as 𝑁 → ∞ then BF → 0. We now exam-

ine each term in the sum and show that in expectation

they are each positive. All of these terms are independent

as they are only depend on the likelihood and not on the

current distribution. Hence, they will not decay with

additional steps, and so the sum will diverge if the indi-

vidual terms are positive in expectation. The expected

value for each term in the sum is

E

[︃
− log

(︃
𝑃 (𝐼𝑖|w;𝛽

𝑖
)

𝑃 (𝐼𝑖|wtrue;𝛽
𝑖
)

)︃]︃

= −
∑︁

𝐼𝑖∈+1,−1

𝑃 (𝐼𝑖|wtrue;𝛽
𝑖
) log

(︃
𝑃 (𝐼𝑖|w;𝛽

𝑖
)

𝑃 (𝐼𝑖|wtrue;𝛽
𝑖
)

)︃
.

This is the KL divergence between 𝑃 (𝐼𝑖|wtrue;𝛽
𝑖
) and

𝑃 (𝐼𝑖|w;𝛽
𝑖
). This is strictly non-negative and only equal

to zero when 𝑃 (𝐼𝑖|w;𝛽
𝑖
) = 𝑃 (𝐼𝑖|wtrue;𝛽

𝑖
). When

𝛽 = 0, each of these terms equals 0. As 𝛽 → ∞,

𝑃 (𝐼𝑖|w;𝛽
𝑖
) → 𝐻(𝐼w⊤𝜙), where𝐻(·) is the Heaviside

step function. In this case, it holds that 𝑃 (𝐼𝑖|w;𝛽
𝑖
) =

𝑃 (𝐼𝑖|wtrue;𝛽
𝑖
) whenever the values w⊤𝜙 and w⊤

true𝜙
have the same sign.

Therefore, for positive, finite 𝛽 each of the terms in

the sum is positive, so the sum diverges, and so the

𝑃 (w|𝐼;𝛽) → 0 for all w ̸= wtrue.

Bigger 𝛽 isn’t always more informative Querying

a more rational teacher (with a larger 𝛽 value) does not

always lead to faster convergence to the true value, as

measured by lower MSE or LL, because the magnitude of

w⊤𝜙𝑖𝑗 can be learned from the teacher making mistakes.

We empirically observe this in Figure 2, where we

demonstrate that if our current belief distribution 𝑃 (w)
is a normal distribution characterized by 𝜇 and 𝜎, a lower

𝛽 value is more informative for certain values of 𝜇 and 𝜎.

Specifically, when the distribution is symmetric (𝜇 = 0)

then a larger value of 𝛽 is better, and as the distribution

gets broader (larger 𝜎) larger 𝛽 is also better. If the dis-

tribution is very wide then a large 𝛽 allows us to quickly



Figure 2: For some prior beliefs over w, querying a teacher
with a lower 𝛽 parameter is more informative. The plots show
the most informative 𝛽 value (according to the mean squared
error and log loss metrics, respectively) for a range of beliefs.
Each belief is a Gaussian, parameterized by 𝜇 (horizontal axis)
and 𝜎 (vertical axis). The purple regions of the plots indicate
beliefs where it is most informative to query a teacher with a
𝛽 of approximately 1.

remove a lot of probability mass, while if the distribution

is narrow (and asymmetric) then we learn about the value

of w⊤𝜙𝑖𝑗 from the humans making mistakes, which re-

quires the human to be less than perfectly rational. For

example, if w⊤𝜙𝑖𝑗 > 0 then a perfectly rational human

would always choose item 𝑖 over item 𝑗, and we would

not learn about the actual value of w⊤𝜙𝑖𝑗 .

6. Restaurant Recommendation
We now discuss how our method for reward learning

using feedback from multiple teachers can be applied

to a simplified restaurant recommendation domain. In

this domain, the goal is to learn a reward function that

can be used to recommend restaurants to a user. This re-

ward model must be learned from feedback from multiple

teachers, in this case by asking which of two restaurants

a human prefers. It is important to highlight that our

approach is compatible with a variety of popular rec-

ommendation tasks, including entertainment [35, 36],

news [37], and shopping [38] recommendations.

More formally, the problem of restaurant recommen-

dation has a set of restaurants 𝜌 = {𝜌1, 𝜌2, . . . , 𝜌𝑛}
that can be recommended to a user. Moreover, there

is a set of users 𝑈 = {𝑈1, 𝑈2, . . . , 𝑈𝑚} who can

be queried about their restaurant preferences. Each

restaurant is expressed as a set of features 𝐹 =
{Cleanliness,Vegan, Spiciness} where Cleanliness ∈
[1, 10] describes the cleanliness of the restaurant,

Vegan ∈ {0, 1} describes whether the restaurant is

vegan-friendly, and Spiciness ∈ [1, 10] describes the

spiciness of the food. The preference rating for each

restaurant is denoted by w⊤𝜌𝑖, where w ∈ R3
is a

weight vector that parameterizes the reward model. The

aim is to learn the weights w using feedback from multi-

ple users to provide useful restaurant recommendations.

We can represent the restaurant recommendation do-

main using our approach. The set of items𝜑1, 𝜑2, . . . , 𝜑𝑛

is the set of restaurants 𝜌. The set of human users 𝑈 is

the set of human teachers. The users are modelled as

Boltzmann-rational, and have known rationality parame-

ters 𝛽1, 𝛽2, . . . , 𝛽𝑚. Beginning with an initial distribu-

tion 𝑃 (w), we will use Algorithm 1 to converge to the

weight values for the reward function that represents the

user preferences. First, we select a pair of restaurants for

a user to compare (in this case randomly selected) and ap-

ply Equation 8 describing which user should be queried

in order to achieve the lowest metric score in expectation

after a single update. Next, this user is selected and then

asked which of the two restaurants they prefer. Finally,

using the selected user’s preference, the reward model

weights are updated according to Equation 5 to generate

a new belief distribution. The process is repeated until

the belief distribution converges.

7. Experiments
We now show that our approach method for selecting

𝛽 outperforms several baseline methods, using the sim-

ple restaurant recommendation domain. In Figure 3, we

compare: (1) selecting the largest 𝛽 value to see if the

result that larger 𝛽 is not always better is true in practice;

(2) selecting 𝛽 randomly to ensure that the advantage

over selecting the largest 𝛽 is not just due to the ran-

domness of the selection; and (3) always selecting 𝛽 = 1
because this is often what is assumed to be the rationality

parameter in other work.

In this experiment, the size of the weight vector is

𝑑 = 3 and the domain of the weights is 𝑊 = [−10, 10]3,

which is discretized. The prior distribution of the weights

is a uniform distribution over this domain 𝑃 (w) =
𝒰(𝑊 ) and the true weight wtrue ∈ 𝑊 is sampled from

this prior. There are 21 teachers, with 𝛽 values uniformly

spaced between 0 and 4. For 100 steps, two restaurant fea-

ture vectors 𝜑 = {Cleanliness,Vegan,Spiciness} are

generated randomly, where Cleanliness, Spiciness ∼
𝒰(1, 10), and Vegan are uniformly drawn from {0, 1}.

While we generate our samples randomly in order to iso-

late the the effect of teacher selection, any of the active

query selection methods from previous work could be

used here. The teacher is selected and then queried using

one of the various methods and the belief distribution

is updated based on the preference of that teacher. The

same 𝜑 vectors are used for each method, so that the

only difference between the methods is the selection of 𝛽.

This procedure is repeated 100 times, each time sampling

a new true weight vector wtrue.

Overall, we observe that the active teacher selection



Figure 3: Active teacher selection improves reward inference.
These plots show the expected mean squared error and ex-
pected log loss over the course of 100 iterations of reward infer-
ence using various teacher selection methods. The solid line is
the mean, and the shading is the standard deviation. Selecting
teacher 𝛽 w.r.t. mean square error most effectively minimizes
mean square error, while selecting 𝛽 w.r.t. log loss most ef-
fectively minimizes log loss. In both cases, selecting teachers
according to Equation 8 clearly outperforms the heuristic of
always selecting the most rational teacher (largest 𝛽) and the
baselines (random 𝛽 and 𝛽 = 1).

methods (MSE and LL) outperform the baseline methods.

Moreover, we examine how the most informative value

of 𝛽 changes with additional queries in Figure 4. As

expected, the optimal 𝛽 value decreases with additional

queries, as the distribution gets less broad. At beginning

of training, our approach queries the teachers with large

𝛽 values because this enables it to determine the sign of

w⊤𝜙𝑖𝑗 , and then our approach queries the teachers with

smaller 𝛽 values to determine the magnitude of w⊤𝜙𝑖𝑗

as it gets more information.

8. Limitations and Future Work
For the sake of conceptual clarity and mathematical for-

malism, we have used relatively simple human decision-

making and reward models. Future work should extend

these results by increasing model complexity.

For example, this analysis assumes that humans

are Boltzmann-rational decision-makers with constant,

known 𝛽 values. While more nuanced than optimal mod-

els, Boltzmann-rational models fail to account for system-

atic biases in human judgement [28, 39, 40]. This work

could be improved by using more complex, realistic mod-

Figure 4: This plot shows the most informative values of 𝛽
during training, averaged across 100 runs (given the expected
mean squared error and expected log loss respectively). The
solid line is the mean and the shaded area is the standard
deviation. 𝛽 decreases over the course of training, as the
learner’s belief distribution over w becomes more confident.

els of human decision-making, for example by allowing

each human’s 𝛽 parameter to vary across the state space

to capture teacher specialization or by measuring and ex-

plicitly modeling systematic cognitive biases. Moreover,

this analysis assumes that the teacher 𝛽 parameters are

given, whereas in reality the agent may not have access

to this information. Future work should also examine

ways of modeling this part of human decision-making

alongside learning the reward function.

Finally, future work could extend these results to non-

linear reward models, such as ensembles of neural net-

works. Moreover, it could explore convergence proper-

ties and optimal querying strategies for learning from

teachers with different reward functions. For example,

variations in individual taste might lead teachers to dis-

agree on which restaurants are best. Future work should

explore the ramifications of such inter-teacher variance

on teacher selection and reward learning.

9. Conclusion
In this work, we motivated, specified, and evaluated an

algorithm for selecting which teacher to query during

active reward learning with multiple teachers. Our algo-

rithm models the teachers as Boltzmann-rational with

known 𝛽 parameters. At each time step, it queries the

teacher that will be most informative in expectation. In-

terestingly, we find that the most informative teacher is

not always the most rational one. We prove and demon-

strate that the reward learner’s belief will eventually

collapse to the true reward function under our algorithm.

Our hope is that this method and analysis will improve

reward learning in domains where feedback is gathered

from multiple teachers with varying levels of rationality.
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